36 research outputs found

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Long-range orientational order in two-dimensional microfluidic dipoles

    No full text
    Dynamic restructuring and ordering are prevalent in driven many-body systems with long-range interactions, such as sedimenting particles(1-3), dusty plasmas(4), flocking animals(5-7) and microfluidic droplets(8). Yet, understanding such collective dynamics from basic principles is challenging because these systems are not governed by global minimization principles, and because every constituent interacts with many others. Here, we report long-range orientational order of droplet velocities in disordered two-dimensional microfluidic droplet ensembles. Droplet velocities exhibit strong long-range correlation as 1/r(2), with a four-fold angular symmetry. The two-droplet correlation can be explained by representing the entire ensemble as a third droplet. The correlation amplitude is non-monotonous with density owing to excluded-volume effects. Our study puts forth a many-body problem with long-range interactions that is solvable from first principles owing to the reduced dimensionality, and introduces new experimental tools to address open problems in many-body non-equilibrium systems(9,10)
    corecore