65 research outputs found
Comparative study of peroxidase purification from apple and orange seeds
This paper reports the isolation and purification of peroxidase from low cost material; moreover, no significant work has been done on the isolation and purification of peroxidase from such cost effective sources (apple and orange seeds). Peroxidases had attracted considerable interest in recent years because of their activities towards a wide variety of chromogenic substances. Peroxidase activity in crude extract of apple and orange seeds was measured by recording a spectrophotometric value. Partial purification of crude enzyme extract was done by ammonium sulfate precipitation and ion exchange chromatography. It was observed that after partial purification, the enzyme activity was increased as compared to crude enzyme extract. Peroxidase from orange seed was purified up to 17.17 fold with specific activity of 10.17 U/mg and that from apple seed was 6.82 fold with specific activity of 7.53 U/mg after diethyl amino ethyl (DEAE) cellulose chromatography. It was shown that orange seed peroxidase had more activity than apple seed peroxidase in crude extract and each step of purification. Further purification was obtained through gel filtration chromatography by using sephadex-G-75 column. Peroxidase from orange and apple seeds got purified up to 30.64 and 8.34 fold with their specific activity of 18.16 and 9.20 U/mg, respectively. It is more evident that peroxidase is the most heat stable enzyme; therefore, it is concluded that it may be potentially useful for industrial purposes.Key words: Apple and orange seeds, extraction, peroxidase, purification
The shadow pandemic of single use personal protective equipment plastic waste: A blue print for suppression and eradication
Single use personal protective equipment (PPE) has played a major role in preventing COVID-19 infection. Since the beginning of the COVID-19 pandemic, over 4 million tonnes of polypropylene PPE waste has been disposed into the environment in uncontrolled manner causing significant and long-term ecological damage. This work also highlights several effective measures to alleviate the problem of polypropylene PPE waste. Short-term measures include knowledge sharing to minimise the use of single use PPE and to adapt innovative polypropylene recycling technologies. To prepare for a future pandemic, it is also essential to phase out polypropylene PPE using natural based polymers
Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review
Pesticides are among the top-priority contaminants, which significantly contribute to environmental deterioration. Conventional techniques are not efficient enough to remove pollutants from environmental matrices. The development of functional materials has emerged as promising candidates to remove and degrade pesticides and related hazardous compounds. Furthermore, the nanohybrid materials with unique structural and functional characteristics, such as better material anchorage, mass transfer, electron-hole separation, and charged interaction make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we present the current progress in the development of functional materials for the abatement of toxic pesticides. The physicochemical characteristics and pesticide-removal functionalities of various metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and carbon-based materials are critically discussed with suitable examples. Finally, the industrial-scale applications of the functional materials, concluding remarks, and future directions in this important arena are given
Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications
In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication
Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae
Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase
Characterization of Fibers from Pineapple's Crown, Rice Husks and Cotton Textile Residues
Genetic modifications associated with sustainability aspects for sustainable developments
10.1080/21655979.2022.2061146Bioengineered1349508-952
Esterases as emerging biocatalysts: mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors
Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases
Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work
- …
