25 research outputs found

    Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays

    Get PDF
    Melanoma is one of the most aggressive types of cancer and resection of the tumour prior to dissemination of tumour cells is still the most effective treatment. Therefore, early diagnosis of melanocytic lesions is important and identification of novel (molecular) markers would be helpful to improve diagnosis. Moreover, better understanding of molecular targets involved in melanocytic tumorigenesis could possibly lead to development of novel interventions. In this study, we used a custom made oligonucleotide array containing 298 genes that were previously found to be differentially expressed in human melanoma cell lines 1F6 (rarely metastasising) and Mel57 (frequently metastasising). We determined differential gene expression in human common nevocellular nevus and melanoma metastasis lesions. By performing nine dye-swap array experiments, using individual as well as pooled melanocytic lesions, a constant differential expression could be detected for 25 genes in eight out of nine or nine out of nine array analyses. For at least nine of these genes, namely THBD, FABP7, H2AFJ, RRAGD, MYADM, HR, CKS2, NCK2 and GDF15, the differential expression found by array analyses could be verified by semiquantitative and/or real-time quantitative RT–PCR. The genes that we identified to be differentially expressed during melanoma progression could be potent targets for diagnostic, prognostic and/or therapeutic interventions

    Early transcriptional response in the jejunum of germ-free piglets after oral infection with virulent rotavirus

    Get PDF
    Germ-free piglets were orally infected with virulent rotavirus to collect jejunal mucosal scrapings at 12 and 18 hours post infection (two piglets per time point). IFN-gamma mRNA expression was stimulated in the mucosa of all four infected piglets, indicating that they all responded to the rotavirus infection. RNA pools prepared from two infected piglets were used to compare whole mucosal gene expression at 12 and 18 hpi to expression in uninfected germ-free piglets (n = 3) using a porcine intestinal cDNA microarray. Microarray analysis identified 13 down-regulated and 17 up-regulated genes. Northern blot analysis of a selected group of genes confirmed the data of the microarray. Genes were functionally clustered in interferon-regulated genes, proliferation/differentiation genes, apoptosis genes, cytoskeleton genes, signal transduction genes, and enterocyte digestive, absorptive, and transport genes. Down-regulation of the transport gene cluster reflected in part the loss of rotavirus-infected enterocytes from the villous tips. Data mining suggested that several genes were regulated in lower- or mid-villus immature enterocytes and goblet cells, probably to support repair of the damaged epithelial cell layer at the villous tips. Furthermore, up-regulation was observed for IFN-γ induced guanylate binding protein 2, a protein that effectively inhibited VSV and EMCV replication in vitro (Arch Virol 150:1213–1220, 2005). This protein may play a role in the small intestine’s innate defense against enteric viruses like rotavirus

    Detection of micrornas in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification

    No full text
    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution

    Factors predicting successful DNA recovery from archival cervical smear samples

    No full text
    Polymerase chain reaction (PCR)-based DNA testing of archival cervical smear slides is a useful method of retrospectively establishing the presence of the human papillomavirus (HPV) in cervical cells. A cellular DNA recovery test is performed in parallel to HPV DNA testing to ensure that sufficient cells are present and purification of sample DNA has been successfully performed. Previous studies have not comprehensively assessed DNA recovery rates in slides older than 13 years. We undertook a study to determine the factors impacting DNA recovery in 436 UK slides dating from 11 to 33 years prior to testing. Overall, a low cellular DNA recovery success rate of 29% was obtained but a strong trend was observed with increasing recovery rates the older the slides (P < 0.001). Recovery rates increased from 22% in the most recent slides collected from 1988 to 1992, to 61% in the oldest slides, collected in 1970-72. It is likely that fixation compounds incorporating acetic acid, introduced in the UK through the 1980s, have compromised subsequent attempts at PCR amplification. These findings emphasize the importance of the original fixation method in the success of DNA recovery from archival smear samples

    Cyclin D1 genotype and expression in sporadic hemangioblastomas.

    No full text
    Contains fulltext : 47368.pdf (publisher's version ) (Closed access)Central nervous system (CNS) hemangioblastomas are highly-vascularized tumors occurring in sporadic form or as a manifestation of von Hippel-Lindau disease (VHL). The VHL protein (pVHL) regulates various target genes, one of which is the CCND1 gene, encoding cyclin D1, a protein that plays a critical role in the control of the cell cycle. Overexpression of cyclin D1 is found in many cancers. The CCND1 gene contains a common G --> A polymorphism (870G > A) that enhances alternative splicing of the gene. CCND1 genotype is associated with clinical outcome in a number of cancers although prognostic significance varies with tumor type. In VHL disease, CCND1 genotype has been suggested as a genetic modifier that influences susceptibility to hemangioblastomas.In order to analyze whether CCND1 genotype plays a role in sporadic CNS hemangioblastomas, we investigated CCND1 genotype in tumor tissue of 17 sporadic and also in five VHL-related CNS hemangioblastomas. In addition, in these tumors the extent and localization of cyclin D1 expression was investigated by immunohistochemistry. We found no deviation in CCND1 genotype distribution and allele frequencies from expected values. Also, there was no correlation between age at onset and CCND1 genotype. The expression of cyclin D1 as detected by immunohistochemistry was highly variable within and between tumors, without a clear correlation with CCND1 genotype. We conclude that, whereas variable but sometimes high cyclin D1 expression is a feature of sporadic hemangioblastomas, CCND1 genotype is unlikely to be an important genetic modifier in the oncogenesis of these tumors
    corecore