4,357 research outputs found

    Bistability in Feshbach Resonance

    Full text link
    A coupled atom-molecule condensate with an intraspecies Feshbach resonance is employed to explore matter wave bistability both in the presence and in the absence of a unidirectional optical ring cavity. In particular, a set of conditions are derived that allow the threshold for bistability, due both to two-body s-wave scatterings and to cavity-mediated two-body interactions, to be determined analytically. The latter bistability is found to support, not only transitions between a mixed (atom-molecule) state and a pure molecular state as in the former bistability, but also transitions between two distinct mixed states.Comment: 6 pages + 3 figures; To appear in Jounal of Modern Optics, Special Issue - Festschrift in Honor of Lorenzo Narducc

    Analysis of benzo[c] phenanthridine alkaloids in Eschscholtzia californica cell culture using HPLC-DAD and HPLC-ESI-MS/MS

    Get PDF
    Effective HPLC-DAD and HPLC-ESI-MS/MS methods have been developed for the analysis of eight benzo[c] phenanthridine alkaloids (sanguinarine, chelirubine, macarpine, chelerythrine, dihydrosanguinarine, dihydrochelirubine, dihydromacarpine and dihydrochelerythrine), which are important metabolites in Eschscholtzia californica cell culture. By adopting a ternary gradient pump system, the dihydro-form alkaloids hardly separable from each other could be successfully separated, and all the target alkaloids could be simultaneously quantified with the LOD values of 0.01-0.79 mu g/mL and the LOQ values of 0.03-3.59 mu g/mL. This HPLC-DAD method was further confirmed by HPLC-ESI-MS/MS system in multiple reaction monitoring mode. Each separated HPLC peak was identified as the target alkaloid, showing its relevant ionized molecule and selected fragment ion. By applying the established method, alkaloid production during the E. californica cell culture could be successfully monitored and some valuable information on its metabolism could be deduced.11Ysciescopu

    Methods for determining the optimal arrangement of water deluge systems on offshore installations

    Get PDF
    Offshore installations are prone to fire and/or explosion accidents. Fires have particularly serious consequences due to their high temperatures and heat flux, which affect humans, structures and environments alike. Due to the hydrocarbon explosions caused by delayed ignition following gas dispersion, fires can be the result of immediate ignition after gas release. Accordingly, it can be difficult to decrease their frequency, which is an element of risk (risk=frequency×consequence), using an active protection system (APS) such as gas detectors capable of shutting down the operation. Thus, it is more efficient to reduce the consequence using a passive protection system (PSS) such as water spray. It is important to decide the number and location of water deluge systems, thus the aim of this study is to introduce a new procedure for optimising the locations of water deluge systems using the water deluge location index (WLI) proposed herein. The locations of water deluge systems are thus optimised based on the results of credible fire scenarios using a three-dimensional computational fluid dynamics (CFD) tool. The effects of water spray and the effectiveness of the WLI are investigated in comparison with uniformly distributed sprays

    The first genome sequences of human bocaviruses from Vietnam.

    Get PDF
    As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the pathogen

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    Paediatric obsessive-compulsive disorder and depressive symptoms: clinical correlates and CBT treatment outcomes.

    Get PDF
    Depression frequently co-occurs with paediatric obsessive-compulsive disorder (OCD), yet the clinical correlates and impact of depression on CBT outcomes remain unclear. The prevalence and clinical correlates of depression were examined in a paediatric specialist OCD-clinic sample (N = 295; Mean = 15 [7 - 18] years, 42 % female), using both dimensional (Beck Depression Inventory-youth; n = 261) and diagnostic (Development and Wellbeing Assessment; n = 127) measures of depression. The impact of depressive symptoms and suspected disorders on post-treatment OCD severity was examined in a sub-sample who received CBT, with or without SSRI medication (N = 100). Fifty-one per-cent of patients reported moderately or extremely elevated depressive symptoms and 26 % (95 % CI: 18 - 34) met criteria for a suspected depressive disorder. Depressive symptoms and depressive disorders were associated with worse OCD symptom severity and global functioning prior to CBT. Individuals with depression were more likely to be female, have had a psychiatric inpatient admission and less likely to be attending school (ps < 0.01). OCD and depressive symptom severity significantly decreased after CBT. Depressive symptoms and depressive disorders predicted worse post-treatment OCD severity (βs = 0.19 and 0.26, ps < 0.05) but became non-significant when controlling for pre-treatment OCD severity (βs = 0.05 and 0.13, ns). Depression is common in paediatric OCD and is associated with more severe OCD and poorer functioning. However, depression severity decreases over the course of CBT for OCD and is not independently associated with worse outcomes, supporting the recommendation for treatment as usual in the presence of depressive symptoms

    c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus)

    Get PDF
    Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance

    Molecular Prognostic Prediction for Locally Advanced Nasopharyngeal Carcinoma by Support Vector Machine Integrated Approach

    Get PDF
    BACKGROUND:Accurate prognostication of locally advanced nasopharyngeal carcinoma (NPC) will benefit patients for tailored therapy. Here, we addressed this issue by developing a mathematical algorithm based on support vector machine (SVM) through integrating the expression levels of multi-biomarkers. METHODOLOGY/PRINCIPAL FINDINGS:Ninety-seven locally advanced NPC patients in a randomized controlled trial (RCT), consisting of 48 cases serving as training set and 49 cases as testing set of SVM models, with 5-year follow-up were studied. We designed SVM models by selecting the variables from 38 tissue molecular biomarkers, which represent 6 tumorigenesis signaling pathways, and 3 EBV-related serological biomarkers. We designed 3 SVM models to refine prognosis of NPC with 5-year follow-up. The SVM1 displayed highly predictive sensitivity (sensitivity, specificity were 88.0% and 81.9%, respectively) by integrating the expression of 7 molecular biomarkers. The SVM2 model showed highly predictive specificity (sensitivity, specificity were 84.0% and 94.5%, respectively) by grouping the expression level of 12 molecular biomarkers and 3 EBV-related serological biomarkers. The SVM3 model, constructed by combination SVM1 with SVM2, displayed a high predictive capacity (sensitivity, specificity were 88.0% and 90.3%, respectively). We found that 3 SVM models had strong power in classification of prognosis. Moreover, Cox multivariate regression analysis confirmed these 3 SVM models were all the significant independent prognostic model for overall survival in testing set and overall patients. CONCLUSIONS/SIGNIFICANCE:Our SVM prognostic models designed in the RCT displayed strong power in refining patient prognosis for locally advanced NPC, potentially directing future target therapy against the related signaling pathways

    Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles

    Get PDF
    Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics
    corecore