71 research outputs found
Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome
BACKGROUND: Pyrexia after stroke (temperature ≥37.5°C) is associated with poor prognosis, but information on timing of body temperature changes and relationship to stroke severity and subtypes varies. METHODS: We recruited patients with acute ischemic stroke, measured stroke severity, stroke subtype and recorded four-hourly tympanic (body) temperature readings from admission to 120 hours after stroke. We sought causes of pyrexia and measured functional outcome at 90 days. We systematically summarised all relevant previous studies. RESULTS: Amongst 44 patients (21 males, mean age 72 years SD 11) with median National Institute of Health Stroke Score (NIHSS) 7 (range 0–28), 14 had total anterior circulation strokes (TACS). On admission all patients, both TACS and non-TACS, were normothermic (median 36.3°C vs 36.5°C, p=0.382 respectively) at median 4 hours (interquartile range, IQR, 2–8) after stroke; admission temperature and NIHSS were not associated (r(2)=0.0, p=0.353). Peak temperature, occurring at 35.5 (IQR 19.0 to 53.8) hours after stroke, was higher in TACS (37.7°C) than non-TACS (37.1°C, p<0.001) and was associated with admission NIHSS (r(2)=0.20, p=0.002). Poor outcome (modified Rankin Scale ≥3) at 90 days was associated with higher admission (36.6°C vs. 36.2°C p=0.031) and peak (37.4°C vs. 37.0°C, p=0.016) temperatures. Sixteen (36%) patients became pyrexial, in seven (44%) of whom we found no cause other than the stroke. CONCLUSIONS: Normothermia is usual within the first 4 hours of stroke. Peak temperature occurs at 1.5 to 2 days after stroke, and is related to stroke severity/subtype and more closely associated with poor outcome than admission temperature. Temperature-outcome associations after stroke are complex, but normothermia on admission should not preclude randomisation of patients into trials of therapeutic hypothermia
An early rise in body temperature is related to unfavorable outcome after stroke: Data from the PAIS study
Subfebrile temperature or fever is present in about a third of patients on the first day after stroke onset and is associated with poor outcome. However, the temporal profile of this association is not well established. We aimed to assess the relationship between body temperature on admission as well as the change in body temperature from admission to 24 h thereafter and functional outcome and death. We analyzed data of 1,332 patients admitted within 12 h of stroke onset. The relation between body temperature on admission or the change in body temperature from admission to 24 h thereafter (adjusted for body temperature on admission) on the one hand and unfavorable outcome (death, or a modified Rankin Scale score >2) at 3 months on the other were expressed as odds ratio per 1.0°C increase in body temperature. Adjustments for potential confounders were made with a multiple logistic regression model. No relation was found between admission body temperature and poor outcome (aOR 1.06; 95% CI 0.85-1.32) and death (aOR 1.23; 95% CI 0.95-1.60). In contrast, increased body temperature in the first 24 h after stroke onset was associated with poor outcome (aOR 1.30; 95% CI 1.05-1.63) and death (aOR 1.51; 95% CI 1.15-1.98). An early rise in body temperature rather than high body temperature on admission is a risk factor for unfavorable outcome in patients with acute stroke
Neuroprotection or Increased Brain Damage Mediated by Temperature in Stroke Is Time Dependent
The control of temperature during the acute phase of stroke may be a new therapeutic target that can be applied in all stroke patients, however therapeutic window or timecourse of the temperature effect is not well established. Our aim is to study the association between changes in body temperature in the first 72 hours and outcome in patients with ischemic (IS) and hemorrhagic (ICH) stroke. We prospectively studied 2931 consecutive patients (2468 with IS and 463 with ICH). Temperature was obtained at admission, and at 24, 48 and 72 hours after admission. Temperature was categorized as low (<36°C), normal (36–37°C) and high (>37°C). As the main variable, we studied functional outcome at 3 months determined by modified Rankin Scale
Risk, Clinical Course, and Outcome of Ischemic Stroke in Patients Hospitalized With COVID-19: A Multicenter Cohort Study
BACKGROUND AND PURPOSE:
The frequency of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) varies in the current literature, and risk factors are unknown. We assessed the incidence, risk factors, and outcomes of acute ischemic stroke in hospitalized patients with COVID-19.
METHODS:
We included patients with a laboratory-confirmed SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infection admitted in 16 Dutch hospitals participating in the international CAPACITY-COVID registry between March 1 and August 1, 2020. Patients were screened for the occurrence of acute ischemic stroke. We calculated the cumulative incidence of ischemic stroke and compared risk factors, cardiovascular complications, and in-hospital mortality in patients with and without ischemic stroke.
RESULTS:
We included 2147 patients with COVID-19, of whom 586 (27.3%) needed treatment at an intensive care unit. Thirty-eight patients (1.8%) had an ischemic stroke. Patients with stroke were older but did not differ in sex or cardiovascular risk factors. Median time between the onset of COVID-19 symptoms and diagnosis of stroke was 2 weeks. The incidence of ischemic stroke was higher among patients who were treated at an intensive care unit (16/586; 2.7% versus nonintensive care unit, 22/1561; 1.4%; P=0.039). Pulmonary embolism was more common in patients with (8/38; 21.1%) than in those without stroke (160/2109; 7.6%; adjusted risk ratio, 2.08 [95% CI, 1.52–2.84]). Twenty-seven patients with ischemic stroke (71.1%) died during admission or were functionally dependent at discharge. Patients with ischemic stroke were at a higher risk of in-hospital mortality (adjusted risk ratio, 1.56 [95% CI, 1.13–2.15]) than patients without stroke.
CONCLUSIONS:
In this multicenter cohort study, the cumulative incidence of acute ischemic stroke in hospitalized patients with COVID-19 was ≈2%, with a higher risk in patients treated at an intensive care unit. The majority of stroke patients had a poor outcome. The association between ischemic stroke and pulmonary embolism warrants further investigation
C-reactive protein in the very early phase of acute ischemic stroke: association with poor outcome and death
Acute ischemic stroke may trigger an inflammatory response that leads to increased levels of C-reactive protein (CRP). High levels of CRP may be associated with poor outcome because they reflect either an inflammatory reaction or tissue damage. We evaluated the prognostic value of CRP within 12 h of onset of ischemic stroke. Levels of CRP were routinely obtained within 12 h of symptom onset in 561 patients with ischemic stroke. CRP values were dichotomized as <7 or ≥7 mg/L. The full range of CRP values was used to detect a possible level-risk relationship. We studied the relation between CRP values and poor outcome (modified Rankin Scale score >2) or death at 3 months. A multiple logistic regression model was applied to adjust for age, sex, NIHSS score, current cigarette smoking, diabetes mellitus, hypertension, statin use, and stroke subtype. After adjustment for potential confounders, patients with CRP levels ≥7 mg/L had a significantly increased risk of poor outcome (adjusted OR 1.6, 95% CI 1.1–2.4) or death (adjusted OR 1.7, 95% CI 1.0–2.9) at 3 months. In addition, the risk of poor outcome or death at 3 months increased with higher levels of CRP. CRP within 12 h of ischemic stroke is an independent prognostic factor of poor outcome at 3 months
Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice
A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems
Characterizing the Role of Cell-Wall β-1,3-Exoglucanase Xog1p in Candida albicans Adhesion by the Human Antimicrobial Peptide LL-37
Candida albicans is the major fungal pathogen of humans. Its adhesion to host-cell surfaces is the first critical step during mucosal infection. Antimicrobial peptides play important roles in the first line of mucosal immunity against C. albicans infection. LL-37 is the only member of the human cathelicidin antimicrobial peptide family and is commonly expressed in various tissues, including epithelium. We previously showed that LL-37 significantly reduced C. albicans adhesion to plastic, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. The inhibitory effect of LL-37 on cell adhesion occurred via the binding of LL-37 to cell-wall carbohydrates. Here we showed that formation of LL-37–cell-wall protein complexes potentially inhibits C. albicans adhesion to polystyrene. Using phage display and ELISA, we identified 10 peptide sequences that could bind LL-37. A BLAST search revealed that four sequences in the major C. albicans cell-wall β-1,3-exoglucanase, Xog1p, were highly similar to the consensus sequence derived from the 10 biopanned peptides. One Xog1p-derived peptide, Xog1p90–115, and recombinant Xog1p associated with LL-37, thereby reversing the inhibitory effect of LL-37 on C. albicans adhesion. LL-37 reduced Xog1p activity and thus interrupted cell-wall remodeling. Moreover, deletion of XOG1 or another β-1,3-exoglucanase-encoding gene EXG2 showed that only when XOG1 was deleted did cellular exoglucanase activity, cell adhesion and LL-37 binding decrease. Antibodies against Xog1p also decreased cell adhesion. These data reveal that Xog1p, originally identified from LL-37 binding, has a role in C. albicans adhesion to polystyrene and, by inference, attach to host cells via direct or indirect manners. Compounds that target Xog1p might find use as drugs that prevent C. albicans infection. Additionally, LL-37 could potentially be used to screen for other cell-wall components involved in fungal cell adhesion
- …