47 research outputs found

    Pyrolysed almond shells used as electrodes in microbial electrolysis cell

    Get PDF
    9 p.The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (realtime PCR) to determine the amount of bacteria capable of growing on the electrodes’surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes. This research was possible thanks to the financial support of the Junta de Castilla y León, and was financed by European Regional Development Funds (LE320P18). C. B. thanks the Spanish Ministerio de Educación, Cultura y Deporte for support in the form of an FPI fellowship grant (Ref #: BES-2016-078329)

    Graphene membranes for water desalination

    Get PDF
    Extensive environmental pollution caused by worldwide industrialization and population growth has led to a water shortage. This problem lowers the quality of human life and wastes a large amount of money worldwide each year due to the related consequences. One main solution for this challenge is water purification. State-of-the-art water purification necessitates the implementation of novel materials and technologies that are cost and energy efficient. In this regard, graphene nanomaterials, with their unique physicochemical properties, are an optimum choice. These materials offer extraordinarily high surface area, mechanical durability, atomic thickness, nanosized pores and reactivity toward polar and non-polar water pollutants. These characteristics impart high selectivity and water permeability, and thus provide excellent water purification efficiency. This review introduces the potential of graphene membranes for water desalination. Although literature reviews have mostly concerned graphene's capability for the adsorption and photocatalysis of water pollutants, updated knowledge related to its sieving properties is quite limited.Peer reviewe

    Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite

    Get PDF
    Developing sustainable and less-expensive technique is always challenging task in water treatment process. This chapter explores the recent development of photocatalysis technique in organic pollutant removal from the water. Particularly, advantages of graphene oxide in promoting the catalytic performance of semiconductor, metal nanoparticle and polymer based photocatalyst materials. Owing to high internal surface area and rapid electron conducting property of graphene oxide fostering as backbone scaffold for effective hetero-photocatalyst loading, and rapid photo-charge separation enables effective degradation of pollutant. This chapter summaries the recent development of graphene oxide composite (metal oxide, metal nanoparticle, metal chalcogenides, and polymers) in semiconductor photocatalysis process towards environmental remediation application

    Sustainable and green polylactic acid-based membrane embedded with self-assembled positively charged f-MWCNTs/GO nanohybrids for the removal of nutrients from wastewater

    No full text
    In this study, the synthesis, and chemical-physical characterization of self-assembled positively charged multi-walled carbon nanotubes/graphene oxide (f-MWCNTs)/(GO)-nanohybrids into adsorptive PLA-based membranes were investigated. The application of the innovative PLA/f-MWCNTs/GO membrane was investigated for the removal of nutrients such as nitrogen (N) and phosphorus (P) from both synthetic and real wastewater by performing various characterization and performance tests. The positively charged nanohybrid was prepared by electrostatic self-assembly of positively charged f-MWCNTs and negatively charged GO. The amount of nanohybrid loading in the nanocomposite membranes varied from 0 to 6 wt%, and its effects on nutrient removal and water flux were investigated. It is demonstrated that with the addition of only 1.5 wt% f-MWCNT/GO nanohybrid into the PLA matrix, the water flux increased by 74% when compared to the unmodified membrane. Also, up to 90.1 +/- 3.4% and 71.3 +/- 3.1% removal rates of ammonium-nitrogen (NH4+-N) and phosphate (PO43--P) ions were achieved using raw wastewater, respectively. The obtained results confirm the practical usability of the proposed innovative material for membrane fabrication in real wastewater treatment applications and can open doors to efficient and sustainable methods for nutrient removal

    Asymmetrical ultrafiltration membranes based on polylactic acid for the removal of organic substances from wastewater

    No full text
    The continued use of non-biodegradable polymeric-based membranes for water purification has led to an unsustainable accumulation of waste at disposal, resulting in various environmental problems. In this study, ecofriendly asymmetric ultrafiltration (UF) membranes were fabricated from polylactic acid (PLA) with different polymer concentrations using the phase inversion method. The fabricated membranes were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, porosity, and pore size analysis. Permeate flux and organic matter (bovine serum albumin (BSA)) rejection were evaluated using synthetic wastewater. The anti-fouling properties of PLA membranes were investigated through static adsorption and dynamic filtration of BSA. Furthermore, the performance of the best performing PLA membrane was evaluated via chemical oxygen demand (COD) rejection as well as membrane fouling using raw municipal wastewater obtained from a local wastewater treatment plant (WWTP) in Abu Dhabi (UAE). The results indicated that increasing the PLA concentration to 20 wt% improved BSA removal from synthetic and raw wastewaters by up to 92 and 89%, respectively, in addition to improving the membrane antifouling property. The post-filtration and after cleaning FT-IR spectra revealed high antifouling property with no detection of BSA peaks, SEM images confirmed the reduction in membrane's pore size as PLA concentration increased, resulting in enhancing the antifouling properties of the membranes. In conclusion, this study demonstrated that PLA-UF membranes could be a viable eco-friendly alternative to traditional crude oil-derived membranes
    corecore