26 research outputs found

    Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells

    Get PDF
    Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction

    Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    Get PDF
    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis

    Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene

    Get PDF
    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5β€² termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress

    IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

    Get PDF
    To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats
    corecore