39 research outputs found

    Polymer nanofilms with enhanced microporosity by interfacial polymerization

    Get PDF
    Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability, and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity which are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultra-thin polyarylate nanofilms with thickness down to 20 nm were formed in-situ by interfacial polymerisation. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalised by molecular simulations, are achieved by utilising contorted monomers for the interfacial polymerisation. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in-situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from noncontorted planar monomers

    Exceptional ammonia uptake by a covalent organic framework

    No full text
    Covalent organic frameworks (COFs) are porous crystalline materials composed of light elements linked by strong covalent bonds. A number of these materials contain a high density of Lewis acid boron sites that can strongly interact with Lewis basic guests, which makes them ideal for the storage of corrosive chemicals such as ammonia. We found that a member of the covalent organic framework family, COF-10, shows the highest uptake capacity (15 mol kg−1, 298 K, 1 bar) of any porous material, including microporous 13X zeolite (9 mol kg−1), Amberlyst 15 (11 mol kg−1) and mesoporous silica, MCM-41 (7.9 mol kg−1). Notably, ammonia can be removed from the pores of COF-10 by heating samples at 200°C under vacuum. In addition, repeated adsorption of ammonia into COF-10 causes a shift in the interlayer packing, which reduces its apparent surface area to nitrogen. However, owing to the strong Lewis acid–base interactions, the total uptake capacity of ammonia and the structural integrity of the COF are maintained after several cycles of adsorption/desorption.Christian J. Doonan, David J. Tranchemontagne, T. Grant Glover, Joseph R. Hunt and Omar M. Yagh

    Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    No full text
    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by Si-29 nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks-M-2[Si(C16H10O4)(1.5)], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate-crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m(2) g(-1)) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites

    Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    No full text
    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen

    Designed synthesis of double-stage two-dimensional covalent organic frameworks

    No full text
    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays
    corecore