11 research outputs found

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    3D settlement analysis of underpinning piles under raft foundation subjected to nonuniform vertical loading

    No full text
    Existing rafts under the design loads sometimes experience excessive settlements or confront such a possibility in the future if the modified functionality of building is induced to increase the foundation loading. Differential settlement and deflection may also be observed in case of eccentric loading especially when these structures are built on soft soils. One of such precedents was observed in a silo structure used as a cement plant located in Douala, Cameroon. The structure that is founded on deep, soft clay with high ground water table rests on a raft supporting the storage tanks located at one side of the building conveying non-uniform loading to the existing raft. In one and a half year after completion of the construction, the silo structure had significantly settled and deflected. The underpinning pile remediation system allowing the continuity of cement production is applied from the outside of building using the rigidly connected protruding reinforced concrete section as a capping beam. In this study, the entire foundation system is numerically analyzed using the presented 3D finite element (FE) models. The back-analyses are used for the calibration concurring with the actual measurements of settlement and deflection at the site. The foundation systems with and without the underpinning piles are compared with each other to reveal how the remedial improvement is achieved by the presented underpinning pile system
    corecore