143 research outputs found

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    Fractional Cauchy problems on bounded domains: survey of recent results

    Full text link
    In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. This problem was first considered by \citet{nigmatullin}, and \citet{zaslavsky} in Rd\mathbb R^d for modeling some physical phenomena. The fractional derivative models time delays in a diffusion process. We will give a survey of the recent results on the fractional Cauchy problem and its generalizations on bounded domains D\subset \rd obtained in \citet{m-n-v-aop, mnv-2}. We also study the solutions of fractional Cauchy problem where the first time derivative is replaced with an infinite sum of fractional derivatives. We point out a connection to eigenvalue problems for the fractional time operators considered. The solutions to the eigenvalue problems are expressed by Mittag-Leffler functions and its generalized versions. The stochastic solution of the eigenvalue problems for the fractional derivatives are given by inverse subordinators

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Weighted Caputo Fractional Iyengar Type Inequalities

    No full text
    Here we present weighted fractional Iyengar type inequalities with respect to Lp norms, with (Formula Presented). Our employed fractional calculus is of Caputo type defined with respect to another function. Our results provide quantitative estimates for the approximation of the Lebesgue-Stieljes integral of a function, based on its values over a finite set of points including at the endpoints of its interval of definition. Our method relies on the right and left generalized fractional Taylor’s formulae. The iterated generalized fractional derivatives case is also studied. We give applications at the end. See also[3]
    • 

    corecore