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Abstract
In this paper, criteria for non-squareness and uniform non-squareness of
Orlicz-Lorentz function spaces �ϕ ,ω are given. Since degenerated Orlicz functions ϕ
and degenerated weight functions ω are also admitted, this investigation concerns
the most possible wide class of Orlicz-Lorentz function spaces.
It is worth recalling that uniform non-squareness is an important property, because

it implies super-reflexivity as well as the fixed point property (see James in Ann. Math.
80:542-550, 1964; Pacific J. Math. 41:409-419, 1972 and García-Falset et al. in J. Funct.
Anal. 233:494-514, 2006).
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Uniform non-squareness of Banach spaces has been defined by James as the geometric
property which implies super-reflexivity (see [, ]). So, after proving this property for a
Banach space, we know, without any characterization of the dual space, that it is super-
reflexive, so reflexive as well. Recently, García-Falset, Llorens-Fuster and Mazcuñan-
Navarro have shown that uniformly non-square Banach spaces have the fixed point prop-
erty (see []).
Therefore, it was natural and interesting to look for criteria of non-squareness prop-

erties in various well-known classes of Banach spaces. Among a great number of papers
concerning this topic, we list here [–].
The problem of uniform non-squareness of Calderón-Lozanovskĭı spaces was initiated

by Cerdà, Hudzik and Mastyło in []. Since the class of Orlicz-Lorentz spaces is a sub-
class of Calderón-Lozanovskĭı spaces, we can say that also the problem of uniform non-
squareness ofOrlicz-Lorentz spaceswas initiated in []. However, the results of our paper
show that those results were only some sufficient conditions for uniform non-squareness
which were very far from being necessary and sufficient. Analogous results for Orlicz-
Lorentz sequence spaces were presented in [], but the techniques of the proofs in the
function case are different (in some parts completely different) than in the sequence case.

1 Preliminaries
We say that a Banach space (X,‖ · ‖) is non-square if min(‖ x–y

 ‖,‖ x+y
 ‖) <  for any x and y

from S(X) (the unit sphere of X). A Banach space X is said to be uniformly non-square if
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there exists δ ∈ (, ) such that min(‖ x–y
 ‖,‖ x+y

 ‖) ≤  – δ for any x, y ∈ B(X) (the unit ball
of X). In the last definition, the unit ball B(X) can be replaced, equivalently, by the unit
sphere S(X).
Let L = L([,γ )) be the space of all (equivalence classes of ) Lebesgue measurable real-

valued functions defined on the interval [,γ ), where γ ≤ ∞. For any x, y ∈ L, we write
x ≤ y if x(t) ≤ y(t) almost everywhere with respect to the Lebesgue measure m on the
interval [,γ ).
Given any x ∈ L, we define its distribution function μx : [, +∞)→ [,γ ] by

μx(λ) =m
({
t ∈ [,γ ) :

∣∣x(t)∣∣ > λ
})

(see [, ] and []) and the non-increasing rearrangement x∗ : [,γ )→ [,∞] of x as

x∗(t) = inf
{
λ ≥  : μx(λ)≤ t

}
(under the convention inf∅ = ∞). We say that two functions x, y ∈ L are equimeasurable
if μx(λ) = μy(λ) for all λ ≥ . Then we obviously have x∗ = y∗.
Let (R,�,μ) and (R,�,μ) be totally σ -finite measure spaces. A map σ from R

into R is called a measure preserving transformation if for each �-measurable sub-
set A from R, the set σ –(A) = {t ∈ R : σ (t) ∈ A} is a �-measurable subset of R and
μ(σ –(A)) = μ(A) (see []). It is well known that a measure preserving transformation
induces equimeasurability, that is, if σ is a measure preserving transformation, then x and
x ◦ σ are equimeasurable functions. The converse is false (see []).
A Banach space E = (E,≤,‖ · ‖), where E ⊂ L, is said to be a Köthe space if the following

conditions are satisfied:
(i) if x ∈ E, y ∈ L and |y| ≤ |x|, then y ∈ E and ‖y‖ ≤ ‖x‖,
(ii) there exists a function x in E that is strictly positive on the whole [,γ ).

Recall that a Köthe space E is called a symmetric space if E is rearrangement invariant
which means that if x ∈ E, y ∈ L and x∗ = y∗, then y ∈ E and ‖x‖ = ‖y‖ (see []). For basic
properties of symmetric spaces, we refer to [, ] and [].
In the whole paper, ϕ denotes an Orlicz function (see [–]), that is, ϕ : [–∞,∞] →

[,∞] (our definition is extended from R into Re by assuming ϕ(–∞) = ϕ(∞) = ∞) and
ϕ is convex, even, vanishing and continuous at zero, left continuous on (,∞) and not
identically equal to zero on (–∞,∞). Let us denote

aϕ = sup
{
u≥  : ϕ(u) = 

}
,

bϕ = sup
{
u ≥  : ϕ(u) < ∞}

and

δ = sup

{
u≥  : ϕ

(
u


)
=


ϕ(u)

}
.

Let us note that if aϕ > , then δ = aϕ , while left continuity of ϕ on (,∞) is equivalent to
the fact that limu→(bϕ )– ϕ(u) = ϕ(bϕ).
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Recall that an Orlicz function ϕ satisfies the condition 
 for all u ∈ R (ϕ ∈ 
(R) for
short) if there exists a constant K >  such that the inequality

ϕ(u) ≤ Kϕ(u) ()

holds for any u ∈ R (then we have aϕ =  and bϕ = ∞). Analogously, we say that an Or-
licz function ϕ satisfies the condition 
 at infinity (ϕ ∈ 
(∞) for short) if there exist a
constant K >  and a constant u ≥  such that ϕ(u) < ∞ and inequality () holds for any
u≥ u (then we obtain bϕ = ∞).
For any Orlicz function ϕ, we define its complementary function in the sense of Young

by the formula

ψ(u) = sup
v>

{|u|v – ϕ(v)
}

for all u ∈R. It is easy to show that ψ is also an Orlicz function.
Let ω : [,γ ) → R+ be a non-increasing and locally integrable function called a weight

function. Let us define

γ = sup
{
t ≥  : ω is constant on (, t)

}
,

α = sup
{
t ≥  : ω(t) > 

}
.

We say that a weight function ω is regular if there exists η >  such that

∫ t


ω(t)dt ≥ ( + η)

∫ t


ω(t)dt

for any t ∈ [,γ /) (see [–]). Note that if the weight function ω is regular, then∫ ∞
 ω(t)dt = ∞ in the case when γ = ∞ and α > γ / whenever γ <∞.
Now we recall the definition of Orlicz-Lorentz spaces. These spaces were introduced

by Kamińska (see [, ] and []) at the beginning of s. Her investigations gave
an impulse to further investigations of the spaces, results of which have been published,
among others, in the papers [, –].
Given any Orlicz function ϕ and a weight function ω, we define on L the convex mod-

ular

Iϕ,ω(x) =
∫ γ


ϕ
(
x∗(t)

)
ω(t)dt

(see [] and []) and the Orlicz-Lorentz function space

�ϕ,ω = �ϕ,ω
(
[,γ )

)
=

{
x ∈ L : Iϕ,ω(λx) <∞ for some λ > 

}
(see [] and []), which becomes a Banach symmetric space under the Luxemburg norm

‖x‖ = inf
{
λ >  : Iϕ,ω(x/λ) ≤ 

}
.
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In our investigations, we apply the results concerning the monotonicity properties of
Lorentz function spaces that were presented in [, , ]. Let us recall that the Lorentz
function spaces �ω (see [, , , , –]) are defined by the formula

�ω = �ω

(
[,γ )

)
=

{
x ∈ L : ‖x‖ω =

∫ γ


x∗(t)ω(t)dt <∞

}
.

A Banach lattice E = (E,≤,‖ · ‖) is said to be strictly monotone if x, y ∈ E,  ≤ y ≤ x
and y �= x imply that ‖y‖ < ‖x‖. We say that E is uniformly monotone if for any ε ∈ (, ),
there is δ(ε) ∈ (, ) such that ‖x – y‖ ≤  – δ(ε) whenever x, y ∈ E,  ≤ y ≤ x, ‖x‖ = 
and ‖y‖ ≥ ε (see []). Recall (see []) that in Banach lattices E, strict monotonicity and
uniform monotonicity are restrictions of rotundity and uniform rotundity (respectively)
to couples of comparable elements in the positive cone E+ only.

Theorem . ([], Theorem  and [], Lemma .) The Lorentz function space �ω is
strictly monotone if and only if ω is positive on [,γ ) and

∫ γ

 ω(t)dt = ∞ whenever γ = ∞.

The following theorem has been proved in [, Theorem ] for γ = ∞. Moreover, apply-
ing some ideas from the proof of Theorem . (see Case  on p.) in [], this theorem
can be also shown for γ < ∞.

Theorem . The Lorentz function space �ω is uniformly monotone if and only if the
weight function ω is regular and ω is positive on [,γ ) whenever γ < ∞.

In our further investigations, we will also apply Lemma . and Remark .. By convexity
of the modular Iϕ,ω , Lemma . can be proved analogously as in the case of Orlicz spaces
(cf. also [] for considering a more general case).

Lemma . Suppose that the Orlicz function ϕ satisfies a suitable condition 
, that is,
ϕ ∈ 
(R) if γ = ∞ and

∫ ∞
 ω(t)dt = ∞, and ϕ ∈ 
(∞) otherwise. Then, for any ε ∈ (, ),

there exists δ = δ(ε) ∈ (, ) such that ‖x‖ ≤  – δ for any x ∈ �ϕ,ω whenever Iϕ,ω(x)≤  – ε.
In particular, for any x ∈ �ϕ,ω , we then have that ‖x‖ =  if and only if Iϕ,ω(x) = .

Remark . Let x, y ∈ �ϕ,ω and t ∈ (,γ ) be such that ( x+y )∗(t) > lims→∞( x+y )∗(s) =
( x+y )∗(∞). By [, Property ◦, p.], there exists a set et = et( x+y ) such thatm(et) = t and

∫ t



(
x + y


)∗
(s)ds =

∫
et

∣∣∣∣x + y


∣∣∣∣(s)ds.
Defining t(x) =m(suppx ∩ et) and t(y) =m(supp y ∩ et), by convexity of the modular Iϕ,ω ,
we have

∫ t


ϕ

((
x + y


)∗
(s)

)
ω(s)ds = Iϕ,ω

((
x + y


)
χet

)
≤ 


Iϕ,ω(xχet ) +



Iϕ,ω(yχet )

=



∫ t(x)


ϕ
(
(xχet )

∗(s)
)
ω(s)ds

+



∫ t(y)


ϕ
(
(yχet )

∗(s)
)
ω(s)ds.
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Denoting At = [,γ )\et , a(x) =m(suppx ∩ At), a(y) =m(supp y ∩ At) and applying con-
vexity of the modular Iϕ,t , defined by the formula

Iϕ,t(x) =
∫ γ


ϕ
(
x∗(s)

)
ω(t + s)ds

(if γ < ∞, we assume that ω(t + s) =  for s ≥ γ – t), we get

∫ γ

t
ϕ

((
x + y


)∗
(s)

)
ω(s)ds =

∫ γ


ϕ

(((
x + y


)
χAt

)∗
(s)

)
ω(t + s)ds

= Iϕ,t
((

x + y


)
χAt

)
≤ 


Iϕ,t(xχAt ) +



Iϕ,t(yχAt )

=



∫ a(x)


ϕ
(
(xχAt )

∗(s)
)
ω(t + s)ds

+



∫ a(y)


ϕ
(
(yχAt )

∗(s)
)
ω(t + s)ds

=



∫ t+a(x)

t
ϕ
(
(xχAt )

∗(s – t)
)
ω(s)ds

+



∫ t+a(y)

t
ϕ
(
(yχAt )

∗(s – t)
)
ω(s)ds. ()

2 Results
We start with the following

Theorem. Let γ = ∞.Then the Orlicz-Lorentz function space�ϕ,ω is non-square if and
only if

∫ ∞
 ω(t)dt = ∞, ϕ ∈ 
(R) and

∫ γ/
 ϕ(δ)ω(t)dt < .

Proof Necessity. If
∫ ∞
 ω(t)dt < ∞ or ϕ /∈ 
(R), then �ϕ,ω contains an order isometric

copy of l∞ (see [, Theorem .]). Finally, suppose that
∫ γ/
 ϕ(δ)ω(t)dt ≥ . Taking

x = aχ[,γ/) and y = aχ[γ/,γ),

where a ≤ δ is such that
∫ γ/
 ϕ(a)ω(t)dt = ,we get Iϕ,ω(x) = Iϕ,ω(y) = Iϕ,ω( x+y ) = Iϕ,ω( x–y ) =

 and, consequently, ‖x‖ = ‖y‖ = ‖ x+y
 ‖ = ‖ x–y

 ‖ = . Thus, �ϕ,ω is not non-square.
Sufficiency. Let x, y ∈ S(�ϕ,ω). Since ϕ satisfies the condition 
(R), by Lemma ., it is

enough to show that min(Iϕ,ω( x–y ), Iϕ,ω( x+y )) < . Let us denote

A =
{
t ∈ (,∞) : x(t)y(t) > 

}
,

A =
{
t ∈ (,∞) : x(t)y(t) < 

}
,

A =
{
t ∈ (,∞) : x(t)y(t) =  and max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) > δ
}
,

A =
{
t ∈ (,∞) : x(t)y(t) =  and  <max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) ≤ δ
}
.

()

By ϕ ∈ 
(R), we have aϕ =  and bϕ = ∞. Therefore,

ϕ

(
u – v


)
< ϕ

(
max(|u|, |v|)



)
<


{
ϕ(u) + ϕ(v)

}
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if uv >  and

ϕ

(
u + v


)
< ϕ

(
max(|u|, |v|)



)
<


{
ϕ(u) + ϕ(v)

}

whenever uv < . Moreover, if u > δ, then ϕ( u ) <

ϕ(u). Consequently,

ϕ ◦
(
x – y


)
�



{
ϕ ◦ (x) + ϕ ◦ (y)} ifm(A) > ,

ϕ ◦
(
x + y


)
�



{
ϕ ◦ (x) + ϕ ◦ (y)} ifm(A ∪A) > .

Hence, by strict monotonicity of the Lorentz space �ω (see Theorem .), we get

Iϕ,ω
(
x – y


)
=

∥∥∥∥ϕ ◦
(
x – y


)∥∥∥∥
ω

<
∥∥∥∥ ϕ ◦ x + 


ϕ ◦ y

∥∥∥∥
ω

≤  ifm(A) > ,

Iϕ,ω
(
x + y


)
=

∥∥∥∥ϕ ◦
(
x + y


)∥∥∥∥
ω

<
∥∥∥∥ ϕ ◦ x + 


ϕ ◦ y

∥∥∥∥
ω

≤  ifm(A ∪A) > .

Therefore, ifm(A ∪A ∪A) > , we have min(Iϕ,ω( x–y ), Iϕ,ω( x+y )) < .
Finally, suppose that m(A ∪ A ∪ A) = . Then δ >  and Iϕ,ω( x–y ) = Iϕ,ω( x+y ). We will

prove that

Iϕ,ω
(
x± y


)
=

∫ ∞


ϕ

((
x± y


)∗
(t)

)
ω(t)dt

<



∫ ∞


ϕ
(
x∗(t)

)
ω(t)dt +




∫ ∞


ϕ
(
y∗(t)

)
ω(t)dt = . ()

In order to do this, we will consider two cases.
Case . Suppose that γ > . Since Iϕ,ω(x) = Iϕ,ω(y) = , by the condition

∫ γ/
 ϕ(δ)ω(t)dt <

, we havem(suppx) > γ/ andm(supp y) > γ/. Hence, bym(suppx∩ supp y) = , we ob-
tain m(suppx ∪ supp y) > γ. By the condition

∫ ∞
 ω(t)dt = ∞, we have limt→∞( x+y )∗(t) =

( x+y )∗(∞) = , whence we get ( x+y )∗(γ) > ( x+y )∗(∞). Then there exists a set eγ = eγ (
x+y
 )

with m(eγ ) = γ and

∫ γ



(
x + y


)∗
(t)dt =

∫
eγ

∣∣∣∣x + y


∣∣∣∣(t)dt
(see [, Property ◦, p.]). Defining

γ(x) =m(eγ ∩ suppx) and γ(y) =m(eγ ∩ supp y),

we have γ(x) + γ(y) = γ and, by convexity of the modular Iϕ,ω ,

∫ γ


ϕ

((
x + y


)∗
(t)

)
ω(t)dt = Iϕ,ω

((
x + y


)
χeγ

)
≤ 


Iϕ,ω(xχeγ ) +



Iϕ,ω(yχeγ )

=



∫ γ(x)


ϕ
(
x∗(t)

)
ω(t)dt +




∫ γ(y)


ϕ
(
y∗(t)

)
ω(t)dt. ()
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Setting Aγ = [,γ )\eγ , by inequality () from Remark ., we get

∫ ∞

γ

ϕ

((
x + y


)∗
(t)

)
ω(t)dt

≤ 


∫ ∞

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt +




∫ ∞

γ

ϕ
(
(yχAγ

)∗(t – γ)
)
ω(t)dt. ()

Since ϕ(( x+y )∗(γ)) > , we may assume without loss of generality that

∫ ∞

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt > .

Denote ω(t) = ω for t ∈ (,γ). If γ(x) < γ, applying the inequality ω(t) < ω for t > γ, we
get




∫ γ(x)


ϕ
(
x∗(t)

)
ω(t)dt +




∫ ∞

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt

<



∫ γ(x)


ϕ
(
x∗(t)

)
ω(t)dt +




∫ ∞

γ(x)
ϕ
(
(xχAγ

)∗
(
t – γ(x)

))
ω(t)dt

=



∫ ∞


ϕ
(
x∗(t)

)
ω(t)dt. ()

Suppose now that γ(x) = γ. Then γ(y) = , whence supp y ⊂ Aγ and consequently,

 <



∫ ∞

γ

ϕ
(
(yχAγ

)∗(t – γ)
)
ω(t)dt <




∫ ∞


ϕ
(
y∗(t)

)
ω(t)dt. ()

Applying inequalities (), (), () and (), we obtain ().
Case . Let now γ = . Then there exists v such that ( x+y )∗(v) >  and ω(t) > ω(s) for any

t and s satisfying t < v < s. Proceeding similarly as in the above Case , but with v instead
of γ, we get again inequality (). �

Theorem . If γ < ∞, then the Orlicz-Lorentz function space �ϕ,ω is non-square if and
only if γ

 < α ≤ γ , ϕ ∈ 
(∞) and
∫ γ/
 ϕ(δ)ω(t)dt < .

Proof Necessity. The necessity of conditions ϕ ∈ 
(∞) and
∫ γ/
 ϕ(δ)ω(t)dt <  can be

shown similarly as in Theorem .. Suppose that α ≤ γ

 . Since ϕ ∈ 
(∞), so bϕ = ∞,
whence we can find a >  such that

∫ α

 ϕ(a)ω(t)dt = . Putting

x = aχ[,α),

y = aχ[,α) – aχ[α,α),

we have

Iϕ,ω(x) = Iϕ,ω(y) = Iϕ,ω
(
x + y


)
= Iϕ,ω

(
x – y


)
= ,

which means that �ϕ,ω is not non-square.
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Sufficiency. Let x, y ∈ S(�ϕ,ω). Analogously as in the proof of Theorem ., it is enough
to show that min(Iϕ,ω( x–y ), Iϕ,ω( x+y )) < . We divide the proof into several parts.
Case . Assume that α = γ . Let us define the sets Ai, i = , . . . ,  as in () and

A′
 =

{
t ∈ A :max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) > aϕ

}
,

A′
 =

{
t ∈ A :max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) > aϕ

}
.

Ifm(A′
) > , then

 = ϕ

(
x(t) – y(t)



)
= ϕ

(
max(|x(t)|, |y(t)|)



)
<


ϕ
(
max

(∣∣x(t)∣∣, ∣∣y(t)∣∣))
≤ 


{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}

for t ∈ A′
 whenever max(|x(t)|, |y(t)|)/≤ aϕ and

ϕ

(
x(t) – y(t)



)
< ϕ

(
max(|x(t)|, |y(t)|)



)
≤ 


{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}

for t ∈ A′
 whenever max(|x(t)|, |y(t)|)/ > aϕ . Analogously as in Theorem ., by strict

monotonicity of the Lorentz space �ω (see Theorem .), we have Iϕ,ω( x–y ) < . Simi-
larly, Iϕ,ω( x+y ) <  provided m(A′

) > . Notice that if  = m(A′
 ∪ A′

) < m(A ∪ A), then
δ = aϕ > , whencem(A) >  (because Iϕ,ω(x) = Iϕ,ω(y) = ). Now we will consider the case
m(A) > . Then

ϕ

(
x(t)± y(t)



)
= ϕ

(
max(|x(t)|, |y(t)|)



)
<


ϕ
(
max

(∣∣x(t)∣∣, ∣∣y(t)∣∣))
=



{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}
for t ∈ A, whence by strict monotonicity of the Lorentz space �ω , we have again
Iϕ,ω( x±y

 ) < . Finally, suppose that m(A ∪ A ∪ A) = . Then  = aϕ < δ and Iϕ,ω(xχA ) =
Iϕ,ω(yχA ) = . Analogously as in the proof of Theorem ., we can show

Iϕ,ω
(
x± y


)
<



∫ γ


ϕ
(
x∗(t)

)
ω(t)dt +




∫ γ


ϕ
(
y∗(t)

)
ω(t)dt = . ()

Case . Now suppose that γ

 < α < γ and denote

Ax,y =
{
t ∈ [,γ ) :max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) > aϕ

}
.

Case .. Ifm(Ax,y)≤ α, then we define

x̃ = xχAx,y ◦ σ and ỹ = yχAx,y ◦ σ ,

where σ : [,m(Ax,y))→ Ax,y is ameasure preserving transformation (see [, Theorem ,
p.]). Obviously, ϕ ◦ x̃, ϕ ◦ ỹ, ϕ ◦ x̃+̃y

 and ϕ ◦ x̃–̃y
 are equimeasurable with ϕ ◦ xχAx,y ,
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ϕ ◦ yχAx,y , ϕ ◦ x+y
 χAx,y and ϕ ◦ x–y

 χAx,y , respectively. Since �ω([,α)) is strictly monotone,
repeating the proof from Case , we get

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
= min

(
Iϕ,ω

((
x – y


)
χAx,y

)
, Iϕ,ω

((
x + y


)
χAx,y

))

= min

(
Iϕ,ω

(
x̃ – ỹ


)
, Iϕ,ω

(
x̃ + ỹ


))
< .

Case .. Assume now thatm(Ax,y) > α, that is,

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(α) > . ()

By convexity of ϕ and appropriate properties of the rearrangement (see [, Proposi-
tion ., p.]), we obtain

ϕ

((
x± y


)∗
(t)

)
=

(
ϕ ◦

(
x± y


))∗
(t) ≤

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) ()

for any t ∈ [,γ ). If there exists t ∈ [,α) such that inequality () is sharp for the sum or
for the difference, then by the right continuity of the rearrangement, we get

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
< .

Consequently, in the remaining part of the proof, we will assume that for any t ∈ [,α) in
formula (), we have equality for both the sum and the difference.
Case ... Let ( ϕ ◦ x + 

ϕ ◦ y)∗() > ( ϕ ◦ x + 
ϕ ◦ y)∗(t) for all t > α and let us set in

this case

t = sup

{
s :

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(s) >

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) for each t > α

}
.

By the right continuity of the rearrangement, we have  < t ≤ α and

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(α) > . ()

Moreover, if t = α, then ( ϕ ◦ x + 
ϕ ◦ y)∗(s) > ( ϕ ◦ x + 

ϕ ◦ y)∗(α) for any s < α or
( ϕ ◦ x + 

ϕ ◦ y)∗(α) > ( ϕ ◦ x + 
ϕ ◦ y)∗(t) for all t > α. In the case when t < α, there

exists t > α such that ( ϕ ◦ x+ 
ϕ ◦ y)∗(s) > ( ϕ ◦ x+ 

ϕ ◦ y)∗(t) = ( ϕ ◦ x+ 
ϕ ◦ y)∗(t) for

any s < t. Let et = et (

ϕ ◦ x + 

ϕ ◦ y) be the set such that m(et ) = t and

∫ t



(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t)dt =

∫
et

(


ϕ ◦ x + 


ϕ ◦ y

)
(t)dt ()

(see [, Property ◦, p.]). By the proof of Property ◦ from [], we conclude that

(


ϕ ◦ x + 


ϕ ◦ y

)
(s) ≥ lim

t→t–

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t)
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form-a.e. s ∈ et . Hence, by the definition of t, we obtain

(


ϕ ◦ x + 


ϕ ◦ y

)
(s) >

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) ()

form-a.e. s ∈ et and each t > t. Moreover, using again the definition of t, we get that for
m-a.e. s ∈ [,γ )\et , there exists t(s) > t such that

(


ϕ ◦ x + 


ϕ ◦ y

)
(s) ≤

(


ϕ ◦ x + 


ϕ ◦ y

)∗(
t(s)

)
. ()

Since for any t ∈ [,α) we have equality in formula () for both the sum and the differ-
ence, we can find sets et (+) = et (ϕ ◦ ( x+y )) and et (–) = et (ϕ ◦ ( x–y )) such thatm(et (+)) =
m(et (–)) = t and

∫ t



(


ϕ ◦x+ 


ϕ ◦ y

)∗
(t)dt =

∫
et (+)

ϕ ◦
(
x + y


)
(t)dt =

∫
et (–)

ϕ ◦
(
x – y


)
(t)dt. ()

Similarly as in the case of the set et , form-a.e. s ∈ et (+) and for each t > t, we get

ϕ ◦
(
x + y


)
(s) >

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t).

Hence, by convexity of the function ϕ and inequalities () and (), we obtain et (+) ⊂ et .
Since m(et ) = t =m(et (+)), so et (+) = et . Analogously, we derive the equality et (–) =
et . Note also that convexity of the function ϕ and equations () and () imply the equal-
ities

ϕ ◦
(
x + y


)
χet = ϕ ◦

(
x – y


)
χet =

(


ϕ ◦ x + 


ϕ ◦ y

)
χet ,

whence, by inequality (), we get m(supp(xχet )∩ supp(yχet )) =  and

 = aϕ <
(


ϕ ◦ x + 


ϕ ◦ y

)∗
() ≤ δ. ()

Denoting t(x) =m(et ∩ suppx) and t(y) =m(et ∩ supp y), we have

t(x) + t(y) = t. ()

Case .... Suppose t = α. By convexity of the modular Iϕ,ω , we get

∫ t


ϕ

((
x + y


)∗
(t)

)
ω(t)dt = Iϕ,ω

((
x + y


)
χet

)
≤ 


Iϕ,ω(xχet ) +



Iϕ,ω(yχet )

=



∫ t(x)


ϕ
(
x∗(t)

)
ω(t)dt +




∫ t(y)


ϕ
(
y∗(t)

)
ω(t)dt.

If t(y) =  (t(x) = ), then Iϕ,ω( x+y ) ≤ 
 Iϕ,ω(x) =


 (Iϕ,ω(

x+y
 ) ≤ 

 Iϕ,ω(y) =

 ). So,  < t(x) <

t and  < t(y) < t. Furthermore, by equation (), we may assume without loss of gener-
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ality that β(x) :=m((Ax,y\et )∩ suppx) > . Thus

∫ t(x)


ϕ
(
x∗(t)

)
ω(t)dt <

∫ t(x)


ϕ
(
x∗(t)

)
ω(t)dt

+
∫ t(x)+β(x)

t(x)
ϕ
(
(xχAx,y\et )

∗(t – t(x)
))

ω(t)dt

=
∫ α


ϕ
(
x∗(t)

)
ω(t)dt = ,

whence we get Iϕ,ω( x+y ) < .
Case .... Let now t < α. Then, by the definition of t, there exists t > α satisfying

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t).

Define

t = sup

{
t > α :

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t)

}
,

At =
{
t ∈ [,γ ) :

(


ϕ ◦ x + 


ϕ ◦ y

)
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
(t)

}

and

At,x,y =
{
t ∈ At :min

(∣∣x(t)∣∣, ∣∣y(t)∣∣) = 
}
.

Since for any t ∈ [,α) we have equality in formula () for both the sum and the difference,
we can find a set eα = eα( ϕ ◦ x + 

ϕ ◦ y) such thatm(eα) = α and

∫ α



(


ϕ ◦x+ 


ϕ ◦y

)∗
(t)dt =

∫
eα

(


ϕ ◦x+ 


ϕ ◦y

)
(t)dt =

∫
eα

ϕ ◦
(
x + y


)
(t)dt. ()

If m(At,x,y) ≥ α – t, then we can assume without loss of generality that et ⊂ eα ⊂ et ∪
At,x,y, whence we get the equality m(suppxχeα ∩ supp yχeα ) = . Proceeding analogously
as in Case ..., we obtain Iϕ,ω( x+y ) < .
Let now m(At,x,y) < α – t. Then we will suppose that et ∪ At,x,y ⊂ eα ⊂ et ∪ At and

consequently

m
(
(At\eα)∩ suppx

)
=m

(
(At\eα)∩ supp y

)
=m(At\eα) = t – α =: d > .

Putting α(x) = m(eα ∩ suppx), α(y) = m(eα ∩ supp y) and applying again convexity of the
modular Iϕ,ω , we obtain

∫ α


ϕ

((
x + y


)∗
(t)

)
ω(t)dt = Iϕ,ω

((
x + y


)
χeα

)
≤ 


Iϕ,ω(xχeα ) +



Iϕ,ω(yχeα )

=



∫ α(x)


ϕ
(
(xχeα )

∗(t)
)
ω(t)dt

+



∫ α(y)


ϕ
(
(yχeα )

∗(t)
)
ω(t)dt.
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Simultaneously, by equality (), we may assume without loss of generality that α(x) =
t(x) +m((eα\et )∩ suppx) < α, whence

∫ α(x)


ϕ
(
(xχeα )

∗(t)
)
ω(t)dt <

∫ α(x)


ϕ
(
(xχeα )

∗(t)
)
ω(t)dt

+
∫ α(x)+d

α(x)
ϕ
(
(xχAt\eα )

∗(t – α(x)
))

ω(t)dt

≤
∫ α


ϕ
(
x∗(t)

)
ω(t)dt = .

So, we get Iϕ,ω( x+y ) < .
Case ... Finally, assume that ( ϕ ◦ x + 

ϕ ◦ y)∗() = ( ϕ ◦ x + 
ϕ ◦ y)∗(α) = ( ϕ ◦ x +


ϕ ◦ y)∗(t) >  for some t > α and define

A =
{
t ∈ [,γ ) :



ϕ
(
x(t)

)
+


ϕ
(
y(t)

)
=

(


ϕ ◦ x + 


ϕ ◦ y

)∗
()

}
,

A+ =
{
t ∈ [,γ ) : ϕ ◦

(
x + y


)
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
()

}
,

A– =
{
t ∈ [,γ ) : ϕ ◦

(
x – y


)
(t) =

(


ϕ ◦ x + 


ϕ ◦ y

)∗
()

}
.

Applying convexity of the Orlicz function and the equality in formula (), we get the
conditions m(A) > α, A+ ⊂ A, A– ⊂ A and min(m(A+),m(A–)) ≥ α. Since α > γ

 , the set
Ax,y = A+ ∩A– = {t ∈ A :min(|x(t)|, |y(t)|) = } has positive measure. Ifm(Ax,y) ≥ α, we can
assume that eα ⊂ Ax,y (where eα is defined analogously as in ()); in the opposite case,
we can assume that Ax,y ⊂ eα ⊂ A. Proceeding analogously as in Case .., we obtain
Iϕ,ω( x+y ) < . �

Theorem. In the case when γ = ∞, the Orlicz-Lorentz function space�ϕ,ω is uniformly
non-square if and only if ϕ ∈ 
(R), ψ ∈ 
(R) and ω is regular.

Proof Necessity. The necessity of the condition ϕ ∈ 
(R) follows from Theorem .. If
ψ /∈ 
(R), then �ϕ,ω contains an order isomorphic copy of l (see [, Theorem .] or
[, Theorem ]), whence it is not reflexive. Finally, suppose that ω is not regular. Then
we can find a sequence (tn) of positive numbers such that

∫ tn


ω(t)dt ≤

(
 +


n

)∫ tn


ω(t)dt

for any n ∈ N. Since bϕ = ∞, for every n ∈N, there exists an satisfying

ϕ(an)
∫ tn


ω(t)dt = .

Define

xn = anχ[,tn),

yn = anχ[,tn) – anχ[tn ,tn).

http://www.journalofinequalitiesandapplications.com/content/2013/1/32


Foralewski et al. Journal of Inequalities and Applications 2013, 2013:32 Page 13 of 25
http://www.journalofinequalitiesandapplications.com/content/2013/1/32

Then Iϕ,ω(xn) = Iϕ,ω(yn) =  and

Iϕ,ω
(
xn + yn



)
= Iϕ,ω

(
xn – yn



)
=

∫ tn


ϕ(an)ω(t)dt ≥ n

n + 

∫ tn


ϕ(an)ω(t)dt → ,

whence we have min(‖ xn–yn
 ‖,‖ xn+yn

 ‖) → .
Sufficiency. Let x, y ∈ S(�ϕ,ω). Byψ ∈ 
(R) we conclude that there is η ∈ (, ) such that

ϕ( u ) ≤ –η

 ϕ(u) for all u >  (see []). Let us set

A =
{
t ∈ (,∞) : x(t)y(t) > 

}
,

A =
{
t ∈ (,∞) : x(t)y(t) < 

}
,

A =
{
t ∈ (,∞) :

∣∣x(t)∣∣ >  and y(t) = 
}
.

Since Iϕ,ω(x) = , we have max(Iϕ,ω(xχA∪A ), Iϕ,ω(xχA ))≥ /. Suppose that
Iϕ,ω(xχA∪A )≥ /. Since the inequality

ϕ

(
x(t) – y(t)



)
≤ ϕ

(
max(|x(t)|, |y(t)|)



)
≤  – η


ϕ
(
max

(∣∣x(t)∣∣, ∣∣y(t)∣∣))
≤ 


ϕ
(
x(t)

)
+


ϕ
(
y(t)

)
–

η


ϕ
(
x(t)

)
holds form-a.e. t ∈ A ∪A, we get

ϕ ◦
(
x – y


)
≤ 


ϕ ◦ x + 


ϕ ◦ y – η


ϕ ◦ xχA∪A .

Hence, by uniform monotonicity of the Lorentz space �ω (see Theorem .), we obtain

Iϕ,ω
(
x – y


)
=

∥∥∥∥ϕ ◦
(
x – y


)∥∥∥∥
ω

≤
∥∥∥∥ ϕ ◦ x + 


ϕ ◦ y – η


ϕ ◦ xχA∪A

∥∥∥∥
ϕ

≤  – δ

(
η



)
,

where δ( η

 ) is the constant from the definition of uniform monotonicity of the Lorentz
space �ω corresponding to η

 . Analogously, we get Iϕ,ω(
x+y
 ) ≤  – δ( η

 ) in the case when
Iϕ,ω(xχA ) ≥ /. Finally, by Lemma ., we obtain

min

(∥∥∥∥x – y


∥∥∥∥,
∥∥∥∥x + y



∥∥∥∥
)

≤  – r,

where r = r(δ( η

 )) depends only on δ( η

 ). �

Theorem . If α = γ < ∞, then the Orlicz-Lorentz function space �ϕ,ω is uniformly non-
square if and only if ϕ ∈ 
(∞), ψ ∈ 
(∞), ω is regular and

∫ γ/
 ϕ(δ)ω(t)dt < .

Proof Necessity. The necessity of the conditions ϕ ∈ 
(∞) and
∫ γ/
 ϕ(δ)ω(t)dt <  has

been shown in Theorem ., whereas the necessity of the conditions ψ ∈ 
(∞) and reg-
ularity of ω can be shown analogously as in Theorem ..
Sufficiency. Let x, y ∈ S(�ϕ,ω). If we show the inequality

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
≤  – q ()
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for some q >  independent of x and y, then Lemma . will give the inequality

min

(∥∥∥∥x – y


∥∥∥∥,
∥∥∥∥x + y



∥∥∥∥
)

≤  – r,

with some r >  depending only on q, and the proof will be finished. In order to show (),
we consider three cases.
Case . First assume that

∫ γ

 ϕ(δ)ω(t)dt <  (in particular, this holds if δ =  or  < aϕ =
δ). Then we can find uδ > δ such that

∫ γ

 ϕ(uδ)ω(t)dt =: aδ < . Since for any u > δ there
holds

ϕ

(
u


)
<


ϕ(u),

by ψ ∈ 
(∞), there exists η = η(uδ) ∈ (, ) such that

ϕ

(
u


)
≤  – η


ϕ(u) ()

for all u ≥ uδ (see []). Define

A =
{
t ∈ [,γ ) :

∣∣x(t)∣∣ ≥ uδ

}
,

A =
{
t ∈ A : x(t)y(t)≥ 

}
,

A =
{
t ∈ A : x(t)y(t) < 

}
.

We have Iϕ,ω(xχ[,γ )\A) < aδ , whence Iϕ,ω(xχA) >  – aδ and consequently

max
(
Iϕ,ω(xχA ), Iϕ,ω(xχA )

)
>
 – aδ


.

If Iϕ,ω(xχA ) > ( – aδ)/, analogously as in the proof of Theorem ., we get

ϕ ◦ x – y


≤ 

ϕ ◦ x + 


ϕ ◦ y – η


ϕ ◦ xχA .

Hence, by uniform monotonicity of the Lorentz space �ω (see Theorem .), we ob-
tain

Iϕ,ω
(
x – y


)
=

∥∥∥∥ϕ ◦
(
x – y


)∥∥∥∥
ω

≤
∥∥∥∥ ϕ ◦ x + 


ϕ ◦ y – η


ϕ ◦ xχA

∥∥∥∥
ω

≤  – δ

(
η( – aδ)



)
,

where δ(η( – aδ)/) is the constant from the definition of uniform monotonicity of the
Lorentz space �ω corresponding to η( –aδ)/. If Iϕ,ω(xχA ) > ( –aδ)/, then we get simi-
larly that Iϕ,ω( x+y ) ≤ –δ(η(–aδ)/). Therefore, if

∫ γ

 ϕ(δ)ω(t)dt < , we obtain inequality
() with q = δ(η( – aδ)/).
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Case . Now assume that
∫ γ

 ϕ(δ)ω(t)dt ≥  and γ > . Then for

c :=
 –

∫ γ/
 ϕ(δ)ω(t)dt


,

by the condition
∫ γ/
 ϕ(δ)ω(t)dt < , we have  < c < 

 . Moreover, we can find a constant
vδ > δ such that

∫ γ/


ϕ(vδ)ω(t)dt =  – c.

Applying again the condition ψ ∈ 
(∞), we get that there exists η = η(vδ) ∈ (, ) such
that inequality () holds for any u ≥ vδ . Denote

Ax,vδ =
{
t ∈ [,γ ) :

∣∣x(t)∣∣ ≥ vδ

}
, ()

Ay,vδ =
{
t ∈ [,γ ) :

∣∣y(t)∣∣ ≥ vδ

}
. ()

Now we divide the proof of this case into several parts.
Case .. If max(Iϕ,ω(xχAx,vδ

), Iϕ,ω(yχAy,vδ
)) ≥ c, then proceeding analogously as in the

Case , we get

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
≤  – δ

(
ηc


)
, ()

where δ( ηc
 ) is the constant from the definition of uniform monotonicity of the Lorentz

space �ω corresponding to ηc
 .

Case ..Now assume thatmax(Iϕ,ω(xχAx,vδ
), Iϕ,ω(yχAy,vδ

)) < c and define t >  and u >
 by the formulas

∫ t


ϕ(vδ)ω(t)dt =  – c and

∫ γ


ϕ(u)ω(t)dt = c.

By the definition of vδ and the inequality
∫ γ

 ϕ(δ)ω(t)dt ≥ , we have t > γ
 and u < δ,

respectively.
Now we will show that

m(Ax,u ) ≥ t and m(Ay,u )≥ t, ()

where

Ax,u =
{
t ∈ [,γ ) :

∣∣x(t)∣∣ ≥ u
}
, ()

Ay,u =
{
t ∈ [,γ ) :

∣∣y(t)∣∣ ≥ u
}
. ()

Indeed, by the equalities Iϕ,ω(x) = Iϕ,ω(y) =  and the definition ofu, we have Iϕ,ω(xχAx,u
) ≥

 – c and Iϕ,ω(yχAy,u
) ≥  – c, whence by max(Iϕ,ω(xχAx,vδ

), Iϕ,ω(yχAy,vδ
)) < c and the defini-

tion of t, we get ().
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Let

t =
min(t – γ

 ,
γ
 )



and

A+
x,y,u =

{
t ∈ [,γ ) :min

(∣∣x(t)∣∣, ∣∣y(t)∣∣) ≥ u


and x(t)y(t) > 
}
, ()

A–
x,y,u =

{
t ∈ [,γ ) :min

(∣∣x(t)∣∣, ∣∣y(t)∣∣) ≥ u


and x(t)y(t) < 
}
. ()

Case ... First assume thatm(A+
x,y,u ) ≥ t and define

z =
(


ϕ ◦ x + 


ϕ ◦ y

)
– ϕ ◦

(
x – y


)
.

Denoting by p(u) the right derivative of ϕ at a point u, we have p(u) =: p >  for u ∈ [, δ).
Note that form-a.e. t ∈ A+

x,y,u , we have

(


ϕ
(
x(t)

)
+


ϕ
(
y(t)

))
– ϕ

(
x(t) – y(t)



)
≥ ϕ

(
x(t) + y(t)



)
– ϕ

(
x(t) – y(t)



)

≥
∫ ϕ( x(t)+y(t) )

ϕ( x(t)–y(t) )
p(u)du ≥

∫ u/


pdu =

pu


.

Hence, bym(A+
x,y,u ) ≥ t and t < γ, we get

‖z‖ω ≥
∫ t



pu


ω(t)dt =
puωt


,

where ω = ω(t) for any t ∈ (,γ). Analogously, ifm(A–
x,y,u ) ≥ t, for

z =
(


ϕ ◦ x + 


ϕ ◦ y

)
– ϕ ◦

(
x + y


)

we obtain

‖z‖ω ≥
∫ t



pu


ω(t)dt =
puωt


.

Therefore, ifmax(m(A+
x,y,u ),m(A–

x,y,u )) ≥ t, by uniformmonotonicity of the Lorentz space
�ω , we have

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
≤  – δ

(
puωt



)
, ()

where δ( puωt
 ) is the constant from the definition of uniformmonotonicity of the Lorentz

space �ω corresponding to puωt
 .
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Case ... Finally, suppose that max(m(A+
x,y,u ),m(A–

x,y,u )) < t. Then for

Bx,u = Ax,u\
(
A+
x,y,u ∪A–

x,y,u

)
, ()

By,u = Ay,u\
(
A+
x,y,u ∪A–

x,y,u

)
, ()

we have

Bx,u ∩ By,u = ∅ ()

and by () and definition of t,

min
(
m(Bx,u ),m(By,u )

) ≥ t – t ≥ t –



(
t –

γ



)
=
t

+

γ


>

γ


, ()

whence we get

m(Bx,u ∪ By,u )≥ t +
γ


> γ. ()

Define

a =min

( (t + γ
 ) – γ


,
γ



)
and t = γ + a.

Let eγ = eγ (
x+y
 ) and et = et (

x+y
 ) be such thatm(eγ ) = γ,m(et ) = t,

∫ γ



(
x + y


)∗
(t)dt =

∫
eγ

∣∣∣∣x + y


∣∣∣∣(t)dt
and

∫ t



(
x + y


)∗
(t)dt =

∫
et

∣∣∣∣x + y


∣∣∣∣(t)dt
(see [, Property ◦, p.]). Moreover, by the proof of Property ◦, we can assume that
eγ ⊂ et . Denoting Aγ = et\eγ and At = [,γ )\et , by Remark ., we have

Iϕ,ω
(
x + y


)

=
∫ γ


ϕ

((
x + y


)∗
(t)

)
ω(t)dt +

∫ t

γ

ϕ

((
x + y


)∗
(t)

)
ω(t)dt

+
∫ γ

t
ϕ

((
x + y


)∗
(t)

)
ω(t)dt

=
∫ γ


ϕ

(((
x + y


)
χeγ

)∗
(t)

)
ω(t)dt +

∫ t

γ

ϕ

(((
x + y


)
χAγ

)∗
(t – γ)

)
ω(t)dt

+
∫ γ

t
ϕ

(((
x + y


)
χAt

)∗
(t – t)

)
ω(t)dt

≤ 


∫ γ


ϕ
(
(xχeγ )

∗(t)
)
ω(t)dt +




∫ γ


ϕ
(
(yχeγ )

∗(t)
)
ω(t)dt
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+



∫ t

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt +




∫ t

γ

ϕ
(
(yχAγ

)∗(t – γ)
)
ω(t)dt

+



∫ γ

t
ϕ
(
(xχAt

)∗(t – t)
)
ω(t)dt +




∫ γ

t
ϕ
(
(yχAt

)∗(t – t)
)
ω(t)dt.

By formulas () and (), we have

m
(
(Bx,u ∪ By,u )∩At

)
=m

(
(Bx,u ∪ By,u )\et

) ≥ t +
γ


– t = t –

γ


– a ≥ a

and, in consequence, we can assume without loss of generality that (xχAt
)∗(a) > u. If

(xχeγ )
∗(γ – a)≤ u

 , then

∫ γ

γ–a

[
ϕ
(
(xχAt

)∗(t – γ + a)
)
– ϕ

(
(xχeγ )

∗(t)
)]

ω(t)dt

–
∫ t+a

t

[
ϕ
(
(xχAt

)∗(t – t)
)
– ϕ

(
(xχeγ )

∗(t – (t – γ + a)
))]

ω(t)dt

≥ (
ω –ω(t)

)∫ γ

γ–a

(
ϕ
(
(xχAt

)∗(t – γ + a)
)
– ϕ

(
(xχeγ )

∗(t)
))
dt

≥ a
(

ϕ(u) – ϕ

(
u


))(
ω –ω(t)

) ≥ apu(ω –ω(t))


, ()

where p denotes as above the right derivative of ϕ on the interval [, δ) and ω = ω(t) for
any t ∈ (,γ); note that by the definition of γ, we have ω –ω(t) > . Hence,

∫ γ


ϕ
(
(xχeγ )

∗(t)
)
ω(t)dt +

∫ t

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt

+
∫ γ

t
ϕ
(
(xχAt

)∗(t – t)
)
ω(t)dt

≤
∫ γ–a


ϕ
(
(xχeγ )

∗(t)
)
ω(t)dt +

∫ γ

γ–a
ϕ
(
(xχAt

)∗
(
t – (γ – a)

))
ω(t)dt

+
∫ t

γ

ϕ
(
(xχAγ

)∗(t – γ)
)
ω(t)dt

+
∫ t+a

t
ϕ
(
(xχeγ )

∗(t – (t – γ + a)
))

ω(t)dt +
∫ γ

t+a
ϕ
(
(xχAt

)∗(t – t)
)
ω(t)dt

–
apu(ω –ω(t))



≤
∫ γ


ϕ
(
x∗(t)

)
ω(t)dt –

apu(ω –ω(t))


=  –
apu(ω –ω(t))


. ()

Now assume that (xχeγ )
∗(γ – a) > u

 . Then

m
(
eγ ∩ (

A+
x,y,u ∪A–

x,y,u ∪ Bx,u
))

> γ – a≥ 


γ,

whence we get

m(eγ ∩ By,u ) <



γ. ()
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Therefore, by the inequality max(m(A+
x,y,u ),m(A–

x,y,u )) < t ≤ 
γ, we obtain

m
(
eγ ∩ (

A+
x,y,u ∪A–

x,y,u ∪ By,u
))

<


γ < γ – a,

and, in consequence, (yχeγ )
∗(γ – a) < u

 . Simultaneously, by formulas () and () and
the equality t = γ + a, we have

m(By,u ∩At ) >
t

+

γ


–

γ


– a >

t

–

γ


– a ≥ a.

Thus, (yχAt
)∗(a) > u, which gives a possibility to repeat the investigations from () and

() for y. In consequence, we have

Iϕ,ω
(
x + y


)
≤  –

apu(ω –ω(t))


. ()

Recapitulating Case , by inequalities (), () and (), we get inequality () for

q =min

(
δ

(
ηc


)
, δ

(
puωt



)
,
apu(ω –ω(t))



)
.

Case . Finally, assume that
∫ γ

 ϕ(δ)ω(t)dt ≥  and γ = . For arbitrary fixed vδ > δ, we
define the sets Ax,vδ and Ay,vδ by formulas () and (). Ifmax(Iϕ,ω(xχAx,vδ

), Iϕ,ω(yχAy,vδ
)) ≥


 , then proceeding analogously as in Case , we get inequality () with the constant δ(

η

 ).
If max(Iϕ,ω(xχAx,vδ

), Iϕ,ω(yχAy,vδ
)) < 

 , then we define t >  and u >  by the equalities

∫ t


ϕ(vδ)ω(t)dt =




and
∫ γ


ϕ(u)ω(t)dt =



.

We have t < γ , u < δ and min(m(Ax,u ),m(Ay,u )) ≥ t, where the sets Ax,u and Ax,u are
defined by formulas () and (). By the assumption γ = , we can find two positive
constants t and t such that  < t < t < t

 and ω(t) > ω(t). Let

t =
t


and ω =
∫ t


ω(t)dt.

Ifm(A+
x,y,u )≥ t orm(A–

x,y,u ) ≥ t, where the setsA+
x,y,u andA

–
x,y,u are defined by formulas

() and (), then analogously as in Case , we obtain inequality () with the constant
δ( puω

 ).
In the case when max(m(A+

x,y,u ),m(A–
x,y,u )) < t, we define the sets Bx,u and By,u by

formulas () and (). We have

min
(
m(Bx,u ),m(By,u )

) ≥ t – t ≥ 

t.

Defining a = min(t,
t
 –t)

 and repeating the procedure from Case , putting t in place of
γ, we get inequality () with the constant apu(ω(t)–ω(t))

 .
Summarizing Case , we get inequality () with

q =min

(
δ

(
η



)
, δ

(
puω



)
,
apu(ω(t) –ω(t))



)
. �
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Theorem . Let  < α < γ < ∞ and  ≤ aϕ = δ. Then the Orlicz-Lorentz function space
�ϕ,ω is uniformly non-square if and only if ϕ ∈ 
(∞), ψ ∈ 
(∞), ω is regular and α ∈
( γ

 ,γ ).

Proof Necessity. Condition α ∈ ( γ

 ,γ ) follows from Theorem ., while the necessity of
remaining conditions can be proved as in Theorem ..
Sufficiency. Analogously as in Theorem ., it is enough to show that there exists q > 

such that inequality () holds for any x, y ∈ S(�ϕ,ω).
First note that the space �ϕ,ω([,α)), in opposite to the space �ϕ,ω = �ϕ,ω([,γ )), is uni-

formly monotone (see Theorem .). Hence, by [, Theorem ], for all δ >  there exists
p(δ) >  such that for any u ∈ B(�ϕ,ω([,α))) and any v ∈ �ϕ,ω([,α)) with m{suppu ∩
supp v} =  and ‖v‖ ≥ δ, we have

‖u + v‖ ≥ (
 + p(δ)

)‖u‖. ()

Now, for any fixed x, y ∈ (�ϕ,ω), we denote

Ax,y =
{
t ∈ [,γ ) :max

{∣∣x(t)∣∣, ∣∣y(t)∣∣} > aϕ

}
.

In order to show (), we will consider two cases.
Case . Ifm(Ax,y) ≤ α, then we define

x̃ = x ◦ σ and ỹ = y ◦ σ ,

where σ : [,m(Ax,y))→ Ax,y is ameasure preserving transformation (see [, Theorem ,
p.]). Obviously ϕ ◦ x̃, ϕ ◦ ỹ, ϕ ◦ x̃+̃y

 and ϕ ◦ x̃–̃y
 are equimeasurable with ϕ ◦ xχAx,y ,

ϕ ◦ yχAx,y , ϕ ◦ x+y
 χAx,y and ϕ ◦ x+y

 χAx,y , respectively. Therefore, by Theorem ., there
exists q(α) >  independent of x and y such that

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
= min

(
Iϕ,ω

((
x – y


)
χAx,y

)
, Iϕ,ω

((
x + y


)
χAx,y

))

= min

(
Iϕ,ω

(
x̃ – ỹ


)
, Iϕ,ω

(
x̃ + ỹ


))
≤  – q(α).

Case . Let nowm(Ax,y) > α. Denote bym ∈N the smallest possible number satisfying
m(α – γ /) ≥ α and let p(/m) be the constant from inequality () for δ = /m. Fix
ε >  satisfying

(
 + p

(


m

))
( – ε) >  and ε <




. ()

Since ψ ∈ 
(∞), for aε satisfying the equality∫ α


ϕ(aε)ω(t)dt = ε,

analogously as in Case  of Theorem ., we can find η = η(aε) ∈ (, ) such that

ϕ

(
u


)
<
 – η


ϕ(u) ()
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for all u ≥ aε . We may assume without loss of generality that

min

(
Iϕ,ω

(
x – y


)
, Iϕ,ω

(
x + y


))
≥  – ε. ()

Applying [, Property ◦, p.], we can find sets eα(+) = eα(ϕ ◦ ( x+y )) and eα(–) = eα(ϕ ◦
( x–y )) of measure α such that

∫ α



(
ϕ ◦

(
x + y


))∗
(t)dt =

∫
eα (+)

ϕ ◦
(
x + y


)
(t)dt,

∫ α



(
ϕ ◦

(
x – y


))∗
(t)dt =

∫
eα (–)

ϕ ◦
(
x – y


)
(t)dt.

Let us define the sets

A+ =
{
t ∈ eα(+) :max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) ≥ aε

}
,

A+
 =

{
t ∈ A+ : x(t)y(t) > 

}
,

A+
 =

{
t ∈ A+ : x(t)y(t)≤ 

}

and

A– =
{
t ∈ eα(–) :max

(∣∣x(t)∣∣, ∣∣y(t)∣∣) ≥ aε

}
,

A–
 =

{
t ∈ A– : x(t)y(t)≥ 

}
,

A–
 =

{
t ∈ A– : x(t)y(t) < 

}
.

From [, Theorem ., p.] it follows that there are functions u+ and u– both equimea-
surable with ωχ[,α] and satisfying the equalities

∫ α



(
ϕ ◦

(
x + y


))∗
(t)ω(t)dt =

∫
eα (+)

ϕ ◦
(
x + y


)
(t)u+(t)dt, ()

∫ α



(
ϕ ◦

(
x – y


))∗
(t)ω(t)dt =

∫
eα (–)

ϕ ◦
(
x – y


)
(t)u–(t)dt. ()

By the Hardy-Littlewood inequality, we have

∫
eα (+)\A+

ϕ ◦
(
x + y


)
(t)u+(t)dt

≤
∫ α



(
ϕ ◦

((
x + y


)
χeα (+)\A+

))∗
(t)(u+χeα (+)\A+ )∗(t)dt <

∫ α


ϕ(aε)ω(t)dt = ε,

whence by (), we conclude that

∫
A+

ϕ ◦
(
x + y


)
(t)u+(t)dt ≥  – ε. ()
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Similarly, we get

∫
A–

ϕ ◦
(
x – y


)
(t)u–(t)dt ≥  – ε. ()

The remaining part of the proof of Case  will be divided into three subcases.
Case .. Suppose

∫
A+

ϕ ◦ ( x+y )(t)u+(t)dt ≥ ε. Then

ϕ

((
x + y


)
(t)

)
≤ ϕ

(
max(|x(t)|, |y(t)|)



)
≤  – η


{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}

form-a.e. t ∈ A+
 . Hence, by equality (), we get

Iϕ,ω
(
x + y


)
=

∫ α


ϕ

((
x + y


)∗
(t)

)
ω(t)dt =

∫
eα (+)

ϕ ◦
(
x + y


)
(t)u+(t)dt

≤ 


∫
eα (+)\A+



{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}
u+(t)dt

+
 – η



∫
A+


{
ϕ
(
x(t)

)
+ ϕ

(
y(t)

)}
u+(t)dt

≤ 


{∫
eα (+)

ϕ
(
x(t)

)
u+(t)dt +

∫
eα (+)

ϕ
(
y(t)

)
u+(t)dt

}
– ηε

≤  – ηε. ()

Case .. If
∫
A–

ϕ ◦ ( x–y )(t)u–(t)dt ≥ ε, then analogously as above, we can show that

Iϕ,ω
(
x – y


)
≤  – ηε.

Case .. Finally, we will prove that the remaining case

∫
A+


ϕ ◦
(
x + y


)
(t)u+(t)dt < ε and

∫
A–


ϕ ◦
(
x – y


)
(t)u–(t)dt < ε

is not possible. In the opposite case, by () and (), we get

∫
A+


ϕ ◦
(
x + y


)
(t)u+(t)dt ≥  – ε and

∫
A–


ϕ ◦
(
x + y


)
(t)u–(t)dt ≥  – ε.

Since A+
 ∩A–

 = ∅, we can assume without loss of generality thatm(A+
 ) ≤ γ /. Moreover,

by the Hardy-Littlewood inequality and convexity of the modular Iϕ,ω , we obtain

 – ε ≤
∫
A+


ϕ ◦
(
x + y


)
(t)u+(t)dt

≤
∫ m(A+

 )



(
ϕ ◦

((
x + y


)
χA+



))∗
(t)(u+χA+


)∗(t)dt

≤
∫ m(A+

 )



(
ϕ ◦

((
x + y


)
χA+



))∗
(t)ω(t)dt
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= Iϕ,ω
((

x + y


)
χA+



)
≤ 


Iϕ,ω(xχA+


) +



Iϕ,ω(yχA+


)

=



∫ m(A+
 )


(ϕ ◦ xχA+


)∗(t)ω(t)dt +




∫ m(A+
 )


(ϕ ◦ yχA+


)∗(t)ω(t)dt.

Since Iϕ,ω(x) = Iϕ,ω(y) = , so

∫ m(A+
 )


(ϕ ◦ xχA+


)∗(t)ω(t)dt ≥  – ε and

∫ m(A+
 )


(ϕ ◦ yχA+


)∗(t)ω(t)dt ≥  – ε.

()

Similarly,

∫ m(A–
 )


(ϕ ◦ xχA–


)∗(t)ω(t)dt ≥  – ε and

∫ m(A–
 )


(ϕ ◦ yχA–


)∗(t)ω(t)dt ≥  – ε.

()

Let e(α–γ /) = e(α–γ /)(ϕ ◦ xχA–

) ⊂ A–

 be such thatm(e(α–γ /)) = α – γ / and

∫ α–γ /


(ϕ ◦ xχA–


)∗(t)dt =

∫
e(α–γ /)

ϕ ◦ xχA–

(t)dt =

∫
e(α–γ /)

ϕ ◦ xχe(α–γ /) (t)dt.

Then, by the definition ofm, the first inequality in () and the second inequality in (),
we get

‖ϕ ◦ xχe(α–γ /)‖ω =
∫ α–γ /


(ϕ ◦ xχA–


)∗(t)ω(t)dt ≥  – ε

m
≥ 

m
.

Consequently, by () (note that m(supp(ϕ ◦ xχA+

+ ϕ ◦ xχe(α–γ /) )) ≤ γ / + α – γ / = α)

and first inequalities of formulas () and (), we obtain

 =
∫ α


ϕ
(
x∗(t)

)
ω(t)dt ≥

∫ α


(ϕ ◦ xχA+


+ ϕ ◦ xχe(α–γ /) )

∗(t)ω(t)dt

= ‖ϕ ◦ xχA+

+ ϕ ◦ xχe(α–γ /)‖ω ≥

(
 + p

(


m

))
‖ϕ ◦ xχA+


‖ω

≥
(
 + p

(


m

))
( – ε) > ,

which is a contradiction.
Summarizing both cases, we get inequality () with q =min(q(α),ηε). �
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