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Abstract

In this paper, criteria for non-squareness and uniform non-squareness of
Orlicz-Lorentz function spaces A, are given. Since degenerated Orlicz functions ¢
and degenerated weight functions w are also admitted, this investigation concerns
the most possible wide class of Orlicz-Lorentz function spaces.

It is worth recalling that uniform non-squareness is an important property, because
it implies super-reflexivity as well as the fixed point property (see James in Ann. Math.
80:542-550, 1964; Pacific J. Math. 41:409-419, 1972 and Garcia-Falset et al. in J. Funct.
Anal. 233:494-514, 2006).
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Uniform non-squareness of Banach spaces has been defined by James as the geometric
property which implies super-reflexivity (see [1, 2]). So, after proving this property for a
Banach space, we know, without any characterization of the dual space, that it is super-
reflexive, so reflexive as well. Recently, Garcia-Falset, Llorens-Fuster and Mazcufian-
Navarro have shown that uniformly non-square Banach spaces have the fixed point prop-
erty (see [3]).

Therefore, it was natural and interesting to look for criteria of non-squareness prop-
erties in various well-known classes of Banach spaces. Among a great number of papers
concerning this topic, we list here [4-12].

The problem of uniform non-squareness of Calderédn-Lozanovskii spaces was initiated
by Cerda, Hudzik and Mastylo in [13]. Since the class of Orlicz-Lorentz spaces is a sub-
class of Calderén-Lozanovskii spaces, we can say that also the problem of uniform non-
squareness of Orlicz-Lorentz spaces was initiated in [13]. However, the results of our paper
show that those results were only some sufficient conditions for uniform non-squareness
which were very far from being necessary and sufficient. Analogous results for Orlicz-
Lorentz sequence spaces were presented in [14], but the techniques of the proofs in the
function case are different (in some parts completely different) than in the sequence case.

1 Preliminaries

We say that a Banach space (X, | - ||) is non-square if min(|| =2 ||, || 52 [|) < 1 for any x and y
from S(X) (the unit sphere of X). A Banach space X is said to be uniformly non-square if
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there exists § € (0,1) such that min(]| % I 1l % ) <1-36 for any x,y € B(X) (the unit ball
of X). In the last definition, the unit ball B(X) can be replaced, equivalently, by the unit
sphere S(X).

Let L° = L°([0, 1)) be the space of all (equivalence classes of) Lebesgue measurable real-
valued functions defined on the interval [0, y), where y < co. For any x,y € L°, we write
x <y if x(t) < y(¢t) almost everywhere with respect to the Lebesgue measure m on the
interval [0, y).

Given any x € L°, we define its distribution function u, : [0, +00) — [0, y] by
Ux(A) = m({t €[0,y): |x(t)| > k})
(see [15, 16] and [17]) and the non-increasing rearrangement x* : [0, ) — [0, 00] of x as
&*(6) =inf{A > 0: (1) <t}

(under the convention inf@ = co). We say that two functions x,y € L° are equimeasurable
if (1) = y(2) for all A > 0. Then we obviously have x* = y*.

Let (Ry, X1, 1) and (R, Xy, o) be totally o-finite measure spaces. A map o from Ry
into R, is called a measure preserving transformation if for each X,-measurable sub-
set A from Ry, the set 071(A) = {t € R, : 0 () € A} is a ¥;-measurable subset of R; and
u1(0(A)) = ua(A) (see [15]). It is well known that a measure preserving transformation
induces equimeasurability, that is, if o is a measure preserving transformation, then x and
x o o are equimeasurable functions. The converse is false (see [15]).

A Banach space E = (E, <, || - ||), where E C L?, is said to be a Kéthe space if the following
conditions are satisfied:

(i) ifx € E,y € L° and |y| < ||, then y € E and ||y|| < ||#|,

(ii) there exists a function x in E that is strictly positive on the whole [0, y).

Recall that a Kothe space E is called a symmetric space if E is rearrangement invariant
which means that if x € E, y € L and x* = y*, then y € E and ||x|| = ||y|| (see [18]). For basic
properties of symmetric spaces, we refer to [15, 16] and [17].

In the whole paper, ¢ denotes an Orlicz function (see [19-21]), that is, ¢ : [-00, c0] —
[0, 00] (our definition is extended from R into R¢ by assuming ¢(—00) = ¢(c0) = 00) and
@ is convex, even, vanishing and continuous at zero, left continuous on (0,00) and not

identically equal to zero on (—o0, 00). Let us denote

a, = sup{u >0:0W)= 0},

b, = sup{u >0:90u)< oo}
and

6:sup{u20:<p<g> = %(p(u)}.

Let us note that if 4, > 0, then § = a,, while left continuity of ¢ on (0, 00) is equivalent to

the fact that lim,, - ¢ () = ¢(by).
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Recall that an Orlicz function ¢ satisfies the condition A, for all # € R (¢ € Ay(R) for
short) if there exists a constant K > 0 such that the inequality

¢Q2u) = Ko(u) @)

holds for any u € R (then we have a, = 0 and b, = 0c). Analogously, we say that an Or-
licz function ¢ satisfies the condition A, at infinity (¢ € Ay(00) for short) if there exist a
constant K > 0 and a constant %y > 0 such that ¢(u) < 0o and inequality (1) holds for any
u > uy (then we obtain b, = 00).

For any Orlicz function ¢, we define its complementary function in the sense of Young

by the formula

¥ (u) = sup{|ulv - p(v)}

v>0

for all # € R. It is easy to show that 1 is also an Orlicz function.
Let w: [0,y) — R, be a non-increasing and locally integrable function called a weight

function. Let us define

Yo = sup{t > 0: w is constant on (0, t)},

o= sup{t >0:w(t)> O}.

We say that a weight function w is regular if there exists n > 0 such that

2t t
f w(@)dt > 1 +n) / w(t) dt
0 0

for any ¢ € [0,y/2) (see [22-25]). Note that if the weight function w is regular, then
f0°° w(t) dt = 0o in the case when y = 0o and « > /2 whenever y < co.

Now we recall the definition of Orlicz-Lorentz spaces. These spaces were introduced
by Kaminska (see [26, 27] and [24]) at the beginning of 1990s. Her investigations gave
an impulse to further investigations of the spaces, results of which have been published,
among others, in the papers [14, 28—42].

Given any Orlicz function ¢ and a weight function w, we define on L° the convex mod-

ular
v
Ip0(x) = / go(x*(t))w(t) dt
0
(see [26] and [28]) and the Orlicz-Lorentz function space
Ao = A(p,w([O, y)) = {x el® 21, (Ax) < 0o for some A > 0}
(see [26] and [28]), which becomes a Banach symmetric space under the Luxemburg norm

lll| = inf{A > 0 : L, ., (x/2) < 1}.
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In our investigations, we apply the results concerning the monotonicity properties of
Lorentz function spaces that were presented in [25, 43, 44]. Let us recall that the Lorentz
function spaces A,, (see [10, 18, 22, 23, 45-50]) are defined by the formula

Aw =Au([0,7)) = {x el’: x|, = /yx*(t)a)(t) dt < oo}.
0

A Banach lattice E = (E, <, | - ||) is said to be strictly monotone if x,y € E, 0 <y <«
and y # x imply that ||y|| < ||x||. We say that E is uniformly monotone if for any ¢ € (0,1),
there is 6(¢) € (0,1) such that ||x — y|| <1 - 6(¢) whenever x,y € E, 0 <y <ux, |lx]| =1
and ||y|| > ¢ (see [51]). Recall (see [52]) that in Banach lattices E, strict monotonicity and
uniform monotonicity are restrictions of rotundity and uniform rotundity (respectively)

to couples of comparable elements in the positive cone E, only.

Theorem 1.1 ([25], Theorem 2 and [43], Lemma 3.1) The Lorentz function space A, is
strictly monotone if and only if w is positive on [0,y) and foy w(t) dt = 0o whenever y = 00.

The following theorem has been proved in [25, Theorem 1] for y = co. Moreover, apply-
ing some ideas from the proof of Theorem 3.7 (see Case 2 on p.2722) in [53], this theorem

can be also shown for y < oo.

Theorem 1.2 The Lorentz function space A, is uniformly monotone if and only if the
weight function w is regular and w is positive on [0, y) whenever y < oco.

In our further investigations, we will also apply Lemma 1.1 and Remark 1.1. By convexity
of the modular I, ,, Lemma 1.1 can be proved analogously as in the case of Orlicz spaces

(cf also [43] for considering a more general case).

Lemma 1.1 Suppose that the Orlicz function ¢ satisfies a suitable condition A,, that is,

¢ € AR) ify = 0o and fooo w(t)dt = oo, and ¢ € A(oo) otherwise. Then, for any ¢ € (0,1),

there exists § = §(¢) € (0,1) such that ||x|| <1-8 for any x € Ay, whenever I, (x) <1-¢.
In particular, for any x € Ay, we then have that ||x|| = 1 if and only if I, ., (x) = 1.

Remark 1.1 Let x,y € Ay, and ¢ € (0,y) be such that (52)*(t) > limy_,oo(52)*(s) =

(52)*(c0). By [16, Property 7°, p.64], there exists a set e, = e,(5*) such that m(e;) = ¢ and

2
) e

Defining t(x) = m(suppx N e;) and £(y) = m(suppy N e;), by convexity of the modular I,

% ’(s) ds.

we have

; . 1 1
G CO R (P R e

1

t(x) .
A RO

1 t(y)
‘s /0 o (Ore,) (5))ls) ds.
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Denoting A; = [0, y)\e:, a(x) = m(suppx N A), a(y) = m(suppy N A;) and applying con-
vexity of the modular I, defined by the formula

v
I, (x) = / go(x*(s))w(t +8)ds
0
(if ¥ < 0o, we assume that (¢ +s) = 0 for s > y — t), we get

oY oo [ o((52) s

<(x+y)xm> < i I, (X xa,) + %Lp,t(yxm)
/ xXAt )) (t+s)ds

/(; @ ((rxa,)*(s)) (¢ + s) ds

t+a(x)

l\)l’—‘

+

— NI

% (o) (s = 1) ols) ds

t+a(y)
+ %/ (()’XAt s—t)) (s) ds. (2)

2 Results
We start with the following

Theorem 2.1 Lety = oo. Then the Orlicz- Lorentz function space A, is non-square if and
only if [~ o(t)dt = 00, ¢ € Ay(R andfyo/z o(t) dt < 1.

Proof Necessity. 1f fo w(t)dt < 0o or ¢ ¢ Ay(R), then A, contains an order isometric
copy of [° (see [26, Theorem 2.4]). Finally, suppose that fyo/z )w(t) dt > 1. Taking

X =ax[0,y/2) and y= aXlyo/2.v0)

where a < § is such that fyo/z (@w(t)dt =1, we get Iy, (x) = Iy (y) = Ipo(FE) = 1p0(FF) =
1 and, consequently, |lx[| = [ly]l = 52|l = 521l = 1. Thus, A, is not non-square.

Sufficiency. Let x,y € S(A,,). Since ¢ satisfies the condition A,(R), by Lemma 1.1, it is
enough to show that min(l,, (52), I,,.(5*)) < 1. Let us denote

t € (0,00) : x(t)y(t) > 0},

t € (0,00) : x(2)y(¢) = 0 and max(

>3,

1=
{t € (0,00) : x(t)y(t) < O},
{
= ) =8}

t € (0,00) : x(2)y(t) = 0 and 0 < max(

By ¢ € Ay(R), we have a, = 0 and b, = co. Therefore,

w(”Q”)«p(W) o) + o))
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if uv > 0 and

(p(u; v) w(w) <5 lot + o)

whenever uv < 0. Moreover, if u > §, then ¢(3) < %(p(u). Consequently,

po (xzi) S
go (%) p
Hence, by strict monotonicity of the Lorentz space A, (see Theorem 1.1), we get
o (7)o ()
) be(7)
Therefore, if m(A; U Ay U Az) > 0, we have min([w,w(x%y),l(pyw(’%)) <1

Finally, suppose that m(A; U A; U A3) = 0. Then § > 0 and Iw,w(%) = Iw,w(’%). We will
prove that

xEy\ [ xEty\"
we(57)- [ A(557) )t

1 [ 1 [®
< 5/(; @ (x*(1))w(t) dt + 5/0 e(y*(O)w(t)dt =1. (4)

{po@®) +po ()} ifm(Ar)>0,

N= N

{po@) +po(»)] ifmAyUA;s)>o0.

1 1 .
5¢ox+ §<poy <1 ifm(A;)>0,

w

<

w

<1 ifm(A,UA3)>0.

w

<

1 1
—pox+—@o
2‘/’ 2§0 y

[0

In order to do this, we will consider two cases.

Case 1. Suppose that y, > 0. Since I, ,,(x) = I,,,(¥) = 1, by the condition foyo/z o(8)w(t)dt <
1, we have m(supp x) > y0/2 and m(suppy) > y/2. Hence, by m(suppx Nsuppy) = 0, we ob-
tain m(suppx U suppy) > yo. By the condition fooo w(t) dt = 0o, we have limtam(’%)*(t) =

Xty

(52)*(c0) = 0, whence we get (52)*(yo) > (52)*(00). Then there exists a set e,,, = e,,(5%)

with m(ey,) = yo and

NG

(see [16, Property 7°, p.64]). Defining

xX+y
5 ‘(t)dt

Yo(x) = m(e,, Nsuppx) and yo(y) = m(e,, Nsuppy),

we have yy(x) + y0(¥) = yo and, by convexity of the modular I,

%0 *
/0 ¢<(¥) (t))w(t) dt = lew(<9%>)(em) = %Lp,w(x)(eyo) + %Lp,wb’XEm)

1

Y0 (%) . 1 Y09) .
=5 /0 o (x*())w(t) dt + 3 /0 (Y (@) w(t)dt. (5)

Page 6 of 25
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Setting A, = [0, )\ey,, by inequality (2) from Remark 1.1, we get

() oo
Yo 2

1 [ 1
=3 /y ((@xa,) = yo))(t) dt + 3 / @((xa,, )" (t = yo))o(t) dt. (6)

0 Yo

Since ¢((52)*(y0)) > 0, we may assume without loss of generality that
o0
f @ ((xxa,, ) (t = v0))w(t) dt > 0.
¥

Denote w(t) = w for t € (0, y). If o (x) < yo, applying the inequality w(t) < w for ¢ > y,, we
get

Yo (x) 00
3| el @ears 5 [ oo, e ot

2Jo Y0

1 [voW) . 1 [® i
< /0 o= O)ol)ds + /y Pl (= o)y

1 o0
= 5/0 go(x*(t))a)(t)dt. (7)

Suppose now that y,(x) = yo. Then yy(y) = 0, whence suppy C A,,, and consequently,

0< %/yo @(xa,, )t = yo))w(t) dt < %/0 o(* (1)) (®) dt. ®

Applying inequalities (5), (6), (7) and (8), we obtain (4).
Case 2. Let now Y, = 0. Then there exists v such that (x%)*(v) >0 and w(?) > w(s) for any
t and s satisfying ¢ < v < 5. Proceeding similarly as in the above Case 1, but with v instead

of yp, we get again inequality (4). d

Theorem 2.2 If y < 00, then the Orlicz-Lorentz function space A, is non-square if and
onlyif & <a <y, ¢ € Ay(00) and foyo/zw(é)w(t) dt<1.

Proof Necessity. The necessity of conditions ¢ € Ay(oo) and fom/z ¢(8)w(t)dt < 1 can be
shown similarly as in Theorem 2.1. Suppose that o < % Since ¢ € Ay(00), so b, = 00,
whence we can find a > 0 such that fg p(a)w(t) dt = 1. Putting

X =ax[0,2a)

Y =aX0,e) — AX[a,2a)

we have
X+ Xx—
ot =000 =1 (557) <1057

which means that A, is not non-square.

1;
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Sufficiency. Let x,y € S(A,,,). Analogously as in the proof of Theorem 2.1, it is enough
to show that min(/, ,(52), 1,,.(5%)) < 1. We divide the proof into several parts.

Case 1. Assume that o = y. Let us define the sets A;, i = 1,...,4 as in (3) and

Al = {t €A;: max(|x(t)

@) > apb,
Ay = {t € Ay :max(|x(®)|, |y®)]) > a, }.

If m(A}) > 0, then

o=¢(“”;””)=¢Cm“”@“”m“)<§mmmuan

o)

=

{o(x@®) + 9 (y(0)}

N =

for t € A} whenever max(|x(2)|, |y(t)|)/2 < a, and

p <x(t) - y(t)> <y (maX(Ix(t) | |y(t)|)>

2 2 < {p(x(0) + 9 (0)}

-2

for t € A} whenever max(|x(t)|, |y(¢)])/2 > a,. Analogously as in Theorem 2.1, by strict
monotonicity of the Lorentz space A, (see Theorem 1.1), we have I(p,w(’%) < 1. Simi-
larly, IWD(’%) < 1 provided m(A}) > 0. Notice that if 0 = m(A] U A}) < m(A; U Aj), then
8 = a, >0, whence m(A3) > 0 (because I, (%) = Iy, (y) = 1). Now we will consider the case
m(Az) > 0. Then

(B0£0) _ (mixtl o)
A== )\ =2

) < %(p(maxﬂx(t)i» ly(@®)]))
ORI

for t € As, whence by strict monotonicity of the Lorentz space A,, we have again
IW,,(’%) < 1. Finally, suppose that m(4; UA; UA3) =0. Then 0 = a, <§ and I, ,(xx4,) =

I,,(¥x4,) = 1. Analogously as in the proof of Theorem 2.1, we can show

4+ ¥ ¥
IW<’“Ty) < % / o (" (6) (b dt + % / o(y* (O)o(t) dt = 1. ©)

0 0

Case 2. Now suppose that £ <« < y and denote
Ayy ={t €[0,y) :max(|x(2)|,|y®)|) > a,}.

Case 2.1. If m(A,,) < a, then we define
¥=xxa,,00 and Y=yxa,, 00,

where o : [0,m(A,)) — Ay, is a measure preserving transformation (see [54, Theorem 17,
*y

3y . .
5> and ¢ o => are equimeasurable with ¢ o xx4, ,

p-410]). Obviously, p 0 X%, ¢ 0%, ¢ o >
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POYXALy ¢ O ’%XAW and ¢ o ’%yXAw, respectively. Since A, ([0, @)) is strictly monotone,
repeating the proof from Case 1, we get

. X — X + . X — X +
(52 e (52) s (52 ()
m(I(Ty)I(Ty)) <L

Case 2.2, Assume now that m(A,,) > o, that is,

(%¢ox+ %go oy) (a)>0. (10)

By convexity of ¢ and appropriate properties of the rearrangement (see [15, Proposi-
tion 1.7, p.41]), we obtain

R O LT

for any ¢ € [0, y). If there exists ¢ € [0, «) such that inequality (11) is sharp for the sum or

for the difference, then by the right continuity of the rearrangement, we get

min([wu (’%)@4%)) <1

Consequently, in the remaining part of the proof, we will assume that for any ¢ € [0, «) in
formula (11), we have equality for both the sum and the difference.

Case 2.2.1. Let (%(p ox+ %(p 0 9)*(0) > (%(p ox + %(p 0 y)*(¢) for all £ > « and let us set in
this case

1 1 * 1 1 *
to = supis: J¥ox+poy (s) > JPox+goy (¢) foreach t >« .

By the right continuity of the rearrangement, we have 0 < ¢y < o and
. - *(t ) . . *( )>0 12)
= + = == + = .
SPox+spoy) (to Jvoxt oy (a)>

Moreover, if ty = «, then (3¢ 0 x + 3¢ 0¥)*(s) > (3¢ 0 x + 3¢ 0 y)*(e) for any s < & or
(30 05+ 39 09) (@) > (3pox+ 3¢ 0)*() forall £ > . In the case when £ < , there
exists £ > o such that (3¢ ox+ 19 09)*(s) > (g ox+ 29 09)*(to) = (3¢ 0 x + 29 0 )*(¢) for
any s < ty. Let e, = eto(%go ox + %go o y) be the set such that m(e;,) = £y and

/1 1 * 1 1
/ L poxtspoy (t)dt:/ L ox+tooy)@ar (13)
0o \2 2 ety \ 2 2

(see [16, Property 7°, p.64]). By the proof of Property 7° from [16], we conclude that

L Loy )= tim (X Looy) ®
§¢0x+5¢0y S _tilg)l_ E(pox+§¢oy

Page 9 of 25
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for m-a.e. s € e;,. Hence, by the definition of ¢y, we obtain

1 1 1 1 *
<§¢ox+ 5¢oy>(s)>(§<pox+ Egooy) () (14)

for m-a.e. s € e, and each ¢ > £y. Moreover, using again the definition of £, we get that for
m-a.e. s € [0,y)\ey, there exists t(s) > £y such that

1 1 1 1 *
(ifpox+ 5? oy)(s) < (590 ox+ ¢ oy) (£(s))- (15)

Since for any ¢ € [0,«) we have equality in formula (11) for both the sum and the differ-
ence, we can find sets e, (+) = e;, (¢ 0 (52)) and e;, (—) = e, (¢ 0 (52)) such that m(e;, (+)) =
m(e (=) = to and

/1 1 *
/ <—goox+—(poy> (t)dtz/ ¢o(m)(t)dt:/
0 2 2 etg (+) 2 e

o

@o (’ﬂ)(t) dt. (16)
©) 2

Similarly as in the case of the set e, for m-a.e. s € e;,(+) and for each ¢ > £, we get

1 1 *
@o (%)(s)> <§<p ox+ Egooy) (2).

Hence, by convexity of the function ¢ and inequalities (14) and (15), we obtain e, (+) C e,.
Since m(ey,)) = to = m(ey, (+)), so e, (+) = €. Analogously, we derive the equality e, (-) =
e, - Note also that convexity of the function ¢ and equations (13) and (16) imply the equal-
ities

x+y x—y 1 1
@o T Xeto =@o T Xeto = E(p oX + 5(0 Oy Xeto’

whence, by inequality (10), we get m(supp(xx%) N supp(yx% )) =0 and

1 1 *
0=a¢<<§<pox+§¢>oy> (0) <s8. (17)
Denoting to(x) = m(ey, N suppx) and £o(y) = m(ey, N suppy), we have

to(x) + to(y) = to. (18)

Case 2.2.1.1. Suppose t; = «. By convexity of the modular /,,,, we get

to * 1 1

1

to (%) . 1 [o® i
-2 /0 o O)ole)de + /o ol () lt)de.

If£9(y) = 0 (fo(x) = 0), then I,,,(3) < 31p0(®) = 5 Upw(F) < 3150 (») = 3). S0, 0 < to(x) <
to and O < £y(y) < to. Furthermore, by equation (10), we may assume without loss of gener-
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ality that B(x) := m((Ax,\e;) N suppx) > 0. Thus
to(x) to (%)
/ w(x*(t))a)(t) dt </ <p(x*(t))a)(t) dt
0 0

to (x)+p(x)
T o - )0 ds
b7

0(*)

= /Oa (p(x*(t))w(t) dt=1,

whence we get I, ,(5%) < 1.

Case 2.2.1.2. Let now ) < . Then, by the definition of £, there exists ¢ > « satisfying

1 1 *(t) 1 1 *(t)
—pox+ — == + = .
F¥oxtopoy g¥oxt+ogey) b

Define
. ; (1 1 *(t)— 1 1 *(t)
1=supyt>a: 2goox+2<poy = 2(pox+2(poy 0) {5

Ay = {te [0,¥): <%<pox+ %woy)(t) = (%wom %woy> (to)}

and

Ato,x,y = {t c Ato : min(|x(t){,

y(@®)]) = 0}.

Since for any ¢ € [0, ®) we have equality in formula (11) for both the sum and the difference,
we can find a set e, = ea(%w ox+ %(p o y) such that m(e,) = @ and

@/1 1 * 1 1
/0 (5(pox+§¢)oy) (t)dt:fea(ggoomigooy)(t)dt:/ea(po(’“Zﬂ)(t)dt. (19)

If m(Asyxy) = o — Lo, then we can assume without loss of generality that e;, C e, C e, U
Ay xy» whence we get the equality m(suppxx., N suppyxe,) = 0. Proceeding analogously
as in Case 2.2.1.1, we obtain I, (%) < 1.

Let now m(Ayx,) < o — to. Then we will suppose that e,, U Ay ., C e C ey UAy and
consequently

m((Ay, \eo) N suppx) = m((Ag \ew) Nsuppy) = m(Ay \ey) =t —a =:d > 0.

Putting a(x) = m(e, N suppx), «(y) = m(e, N suppy) and applying again convexity of the
modular /,,,, we obtain

« . 1 1
[ o(552) @)oo =ton((557 ) = hotera) s st

1

a(x) . p
-5 | e @)

+

1 oW
3| elory @)oo
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Simultaneously, by equality (18), we may assume without loss of generality that o(x) =
to(x) + m((eqy \ey,) N suppx) < o, whence

a(x) a(x)
/o w((xxea)*(t))w(t)dt</0 P((xe,)* () (2) dt

a(x)+d
+ / <P((xXAtO vea) (t - Ot(x)))a)(t) dt
o(x)

< /Oa p(x*(t))w(t) dt = 1.

So, we get I, ,(5%) < 1.
Case 2.2.2. Finally, assume that (%(p ox + %(p 09)*(0) = (%(p ox + %(p 0y)* () = (%(p ox+
%go 0 ¥)*(¢) > 0 for some ¢ > « and define

A- {te 10,7): 50(x(0) + 30((0) = (%wo“ 2 oy) (0)},

A+={te[o,y>:¢o<¥>(t>= (%w“%woy) (0>},

A - {te [0,7):00 (’%)(t): (%(pox+ %q)oy) (0)}.

Applying convexity of the Orlicz function and the equality in formula (11), we get the
conditions m(A) > a, A, C A, A_ C A and min(m(A,),m(A_)) > a. Since a > %, the set
Avy=A,NA_={t e A:min(lx(?)|, |y(t)]) = 0} has positive measure. If m(A,,;) > a, we can
assume that e, C Ay, (where e, is defined analogously as in (19)); in the opposite case,
we can assume that A, C e, C A. Proceeding analogously as in Case 2.2.1, we obtain

I,o(52) < 1. 0

Theorem 2.3 [n the case when y = oo, the Orlicz-Lorentz function space A, is uniformly
non-square if and only if p € Ay(R), ¥ € Ay(R) and w is regular.

Proof Necessity. The necessity of the condition ¢ € A,(R) follows from Theorem 2.1. If
¥ ¢ Ay(R), then A, contains an order isomorphic copy of ' (see [38, Theorem 7.18] or
[29, Theorem 2]), whence it is not reflexive. Finally, suppose that w is not regular. Then
we can find a sequence (t,) of positive numbers such that

2ty tn
/ o(t)dt < (1 + l) / w(t)dt
0 njJo

for any n € N. Since b, = 00, for every n € N, there exists a, satisfying

2,
<p(an)/ w(t)dt =1.
0
Define

Xn = An X[0,2t,)

Yn = Au X[0,ty) — AnX[tn,2tn)-

Page 12 of 25
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Then I, ., (%) = I (y,) =1 and

AN s A N
m( 2)-%{ 2>-A¢mmmmz;HA plao(t)de -1,

whence we have min(|| 252 ||, || 252 ||) — 1.
Sufficiency. Letx,y € S(AW,). By ¥ € Ay(R) we conclude that there is € (0,1) such that
p(3) < 1’T"go(u) for all u > 0 (see [55]). Let us set

{t € (0,00) : x(t)y(t) > 0}

A
A, {t € (0,00) : x(t)y(t) < O}
Az

{t € (0,00): |x(t)| >0 and y(¢) = }

Since I, (%) = 1, we have max(/y,., (X x4,u43)s Lp,0(X¥X4,)) = 1/2. Suppose that
I (% xa,043) = 1/2. Since the inequality

)

(p(x(t);y(t))Sw(maX(Ix(;)l Iy(t)|)>S an(max(

0(+(0) + 50(0) - Lo (x(0)

NlH

holds for m-a.e. t € A; U A3z, we get

x-y 1 n
o ) <290°x+2‘/’0y_5§00xXA1UA3

Hence, by uniform monotonicity of the Lorentz space A,, (see Theorem 1.2), we obtain

x—=y x—y n
Loo\ —— | = —Q <1-6{-),
W'( 2 ) ‘¢°< 2 ) o (4)

where §(7) is the constant from the definition of uniform monotonicity of the Lorentz

1 1 n
—@QPOoOX+ -—poy— —@pox
Y 2¢ z(p y 2¢ XA]UA3

space A, corresponding to 2. Analogously, we get I, ,(5%) <1 - 8(}) in the case when
I(%x4,) = 1/2. Finally, by Lemma 1.1, we obtain

X+
min( R —yH) <l-r,
2

where r = r(8(})) depends only on 8(3). O

xX-y
2

Theorem 2.4 Ifa =y < 00, then the Orlicz-Lorentz function space A, is uniformly non-
square if and only if ¢ € Ay(00), ¥ € Ay(00), w is regular and fyo 2 o(8)w(t)dt < 1.

Proof Necessity. The necessity of the conditions ¢ € A,(oc0) and f vo/2 o(8)w(t)dt <1 has
been shown in Theorem 2.2, whereas the necessity of the cond1t10ns ¥ € Ay(00) and reg-
ularity of w can be shown analogously as in Theorem 2.3.

Sufficiency. Let x,y € S(Ay,0). If we show the inequality

min(1 (57 ) (552 ) ) <1-4 20)
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for some g > 0 independent of x and y, then Lemma 1.1 will give the inequality

min (

with some r > 0 depending only on g, and the proof will be finished. In order to show (20),

xX-)

2

’

m”)fl_n
2

we consider three cases.

Case 1. First assume that foy @(8)w(t)dt <1 (in particular, this holds if 6 =0 or 0 < 4, =
§). Then we can find u5 > § such that foy o(us)w(t)dt =: as < 1. Since for any u > § there
holds

w(%) < %cﬂ(u),

by ¥ € Ay(00), there exists n = n(us) € (0,1) such that

w(g) < 1_an(u) (1)

for all u > us (see [55]). Define
A={tel0,y): [x(t)| = us},
Ap={teA:x(t)y(r) = 0},
Ay = {t e A:x(t)y(r) < 0}.
We have I, ., (xx[0,,)\4) < a5, whence I, ,(xx4) >1 — a5 and consequently

1—(13
5

max (I(p,a) (xXA1 )’ I(p,w(xXAz )) >

If Iy, (xx4,) > (1 — a5)/2, analogously as in the proof of Theorem 2.3, we get

x—y<1 1 n
—QOX+ —QOY— —QOX)A-
5 _290 2‘/’ Y 2§0 XA

@o

Hence, by uniform monotonicity of the Lorentz space A, (see Theorem 1.2), we ob-

tain

w57) - o< (57)
crs(29),

where §(n(1 — as)/4) is the constant from the definition of uniform monotonicity of the

1

< ! n
—@pox+—@poy——@ox
Lo 2§0 290 v 2(/’ XA

w

Lorentz space A, corresponding to n(1 —as)/4. If I, ,(xx4,) > (1 —as)/2, then we get simi-
larly that I,,,(52) < 1-8(n(1-as)/4). Therefore, if [] ¢(8)w(t) dt <1, we obtain inequality
(20) with g = §(n(1 — as)/4).
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Case 2. Now assume that foy @(8)w(t)dt > 1 and y, > 0. Then for

1- [7°" g(8)w(t) dt
C:=
8

’

by the condition f0y°/2 0(8)w(t)dt <1, wehave 0 < c < é. Moreover, we can find a constant
vs > 8 such that

vo/2
/ o(vs)w(t)dt =1 - 4c.
0

Applying again the condition ¢ € A,(o0), we get that there exists n = n(vs) € (0,1) such
that inequality (21) holds for any & > v;. Denote

Anys = {t€10,7) :|x(®)| = vs}, (22)

Ay ={t€[0,7): |y@®)| = vs}. (23)

Now we divide the proof of this case into several parts.
Case 2.1. If max([tp,w(x;(Ax,v5 ),lew(yxAy'VS )) > ¢, then proceeding analogously as in the

Case 1, we get

min(1 (57 ) 1o ( 552 ) ) <1-5(% ), @4)

where 8(%6) is the constant from the definition of uniform monotonicity of the Lorentz
space A,, corresponding to 7.
Case 2.2. Now assume that max(]w_,,)(x)(Ax'V(S ),I«;,,,)()/)(Aw‘S )) < ¢ and define £y > 0 and ug >

0 by the formulas

14

/‘fo o(vs)w(t)dt =1-2¢ and / o(uo)w(t) dt = c.
0 0

By the definition of vs and the inequality foy ¢(8)w(t)dt > 1, we have ty > %0 and ug < 8,
respectively.
Now we will show that

m(Ax,uo) Z tO and m(Ay,uo) 2 tO: (25)
where

Ax,uo = {t € [Or )/) |x(t)| > Lt()}, (26)

Ay ={t €[0,7): [y(®)] = uo }. (27)

Indeed, by the equalities [, (x) = I, (y) = 1 and the definition of o, we have I, (xX4,,,,) =
1-cand lew(yXAy,uo) >1 - ¢, whence by max(l(ﬂ,w(x)(Ax'v(S )’I%w(yXAy,vs )) < ¢ and the defini-
tion of ¢y, we get (25).
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Let
. min(zo — 2, 2
4
and
AL o = {t € [0,y) :min(|x(8)], |y®)|) = % and x(¢)y(t) > 0}, (28)
Ay = {t €[0,y): min(‘x(t)!, |y(t)‘) > % and x()y(t) < 0}. (29)

Case 2.2.1. First assume that #( ;,y,uo) > t; and define

1 1 x=y
Z1 = i(pox+§(poy —@o T .

Denoting by p(u) the right derivative of ¢ at a point u, we have p(u) =: p > 0 for u € [0, 5).

Note that for m-a.e.t €A}, , we have

1 - —
(s 3e0)-o(F222) 2o (2032) o[ 20322)

o(=5) ug/2
zf p(u)duZ/ pdu:@.
(MO0 0 2

Hence, by m(A;'y,uo) >t and £ < yp, we get

Puowoty
2

’

n
HAMZ/‘%?MOW=
0

where wg = w(t) for any ¢ € (0, o). Analogously, if m(A, , ) > t, for

%510
(1 1 xX+y
Zy = 2¢ox+2(poy —@o 5

we obtain

4 pu Uowot
M@Mz/'ﬂﬁMﬂm=”°°?
) 2

), m(AL

o0 )) > t1, by uniform monotonicity of the Lorentz space

Therefore, if max(m (A;,y,uo

A, we have

- t
min(1 (552 )t (557) ) 1522, 80)

where § (’”‘OT’”OH) is the constant from the definition of uniform monotonicity of the Lorentz

: puowoty
space A, corresponding to =252

Page 16 of 25
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Case 2.2.2. Finally, suppose that max(m(A; , uo) m(Axyuo)) < t1. Then for
Buuy = Ao \(A740 U AL, o )s (31)
By = Ay (A Y Asy): (32)
we have
Byuy NByuy =9 (33)
and by (25) and definition of #;,
min(m(Bx,MO), m(BWO)) >ty — 24 >ty — l(t - m) _b MRS @, (34)
2 2 2 4 2
whence we get
M (Brig U Bya) = to + 2> yo. (35)

Define

fo+ L) -
a:min(W,%) and L=y +a.

Let ey, = e,,(5%) and ey, = e, (52) be such that m(ey,) = yo, m(er,) = t3,

xX+y
[(5? )Wt

and

[ (52) oa-

2

—y‘(t)dt

xX+Yy
—|(t)dt
2o

(see [16, Property 7°, p.64]). Moreover, by the proof of Property 7°, we can assume that
ey, C ey,. Denoting A, = e, \e,, and A, = [0, y)\ey,, by Remark 1.1, we have

fw»("%)
I t) Jwl(t) dt ? x+y*t s
(( ) ()>w() +/y0 (p((T) ())w()
A s
./ (p<<<x_)xe ) t))w(t)dt+/t2(p(<(M)XA >*(t—yo)>a)(t)dt
0 2 Y0 " ) Yo
(252 ) o

1 [ 1 [vo
< 5/0 @ (e, ) () 0(2) dlt + 5/ (e, )" (D) 0(0) dt

0

M‘
M‘ =
<

+
=

+
S
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ty

| o, = mode s [ o0, - w)otrds

Yo

14 Y
o5 | ol e-eNe@des 5 [ o(on,)e-)owa:

2 ty 17}

By formulas (33) and (35), we have
Yo Yo
m((Byuo U Byuy) NAy,) = m((Byuy UByug)\e,) = to + 5 ty =t — 5 4 >7a

and, in consequence, we can assume without loss of generality that (xxa,,)*(@) > uo. If

(%3ey, )*(v0 — @) < ", then

Y0
[ ol (e= 0+ a) -o(rs, 0 Jotorde
Y

0—a

= [ Lo, €= ) = (5 ) (e (= 0+ ) o0

15}

Y0
= (00-0(0) [ (0(01a,)" (¢ 0+ @) = (051, (0)
Yo—a
. d((p(uo) ~ w(%)> (00— 1) = 3apuo(wz - w(tz))’ 36)

where p denotes as above the right derivative of ¢ on the interval [0, ) and wg = w(¢) for
any t € (0, yo); note that by the definition of y,, we have wy — w(t2) > 0. Hence,

5]

Yo
[ oo )o@+ [ o, e wowdr
Y

Y
e [ o)y - ar

Yo—a Y0
< [ ol O)o@de+ [ o(na,) - G0 -@))ott)de
0 Yo—a

+ [ ol - m)owar
Y

0

tr+a y
+ / <p((xx%)*(t —(ty—yo +a))w(t)dt + / <P((xXA,2)*(t — t,))o(t) dt
_ 3apuo(@o — 0(tr))
4
5 /y o () ot) di - 3apug(wo — w(tz)) 1 Bapug(wo - a)(t2)). )
0 4 2

Now assume that (xx% (Yo —a) > %0. Then

3
m(eyo n (A;,y,uo UA;,y,uo U Bxyuo)) >Yo—a = ZVO;

whence we get

1
m(ey, N Byu,) < R (38)
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+

Therefore, by the inequality max(m(A;

) Wl(A;,y,MO)) <t < %yo, we obtain

_ 1
m(ey, N (AL 0 UAL, 40 UByu)) < 20 <V -4,
and, in consequence, (yx% )*(vo — a) < %2 Simultaneously, by formulas (34) and (38) and
the equality £, = ¥y + a, we have

m(B,,,, NA )>t—0+&—ﬁ—a>t—0—@—a>3a

pioTTRIT 9 T 4 4 2 4 T

Thus, (yx4,,)*(a) > uo, which gives a possibility to repeat the investigations from (36) and
(37) for y. In consequence, we have

1

@,

(39)

(517) 1 Sapen=ote)
- 8

Recapitulating Case 2, by inequalities (24), (30) and (39), we get inequality (20) for

7= min( 6 ne s puowoty ’36119%0(600—60@2)) '
4 2 8

Case 3. Finally, assume that foy @(8)w(t)dt > 1 and yy = 0. For arbitrary fixed vs > §, we
define the sets A,,,, and A,,,; by formulas (22) and (23). If max(/,,. (xx Arvy ) Doy XAy,us ) >
%, then proceeding analogously as in Case 2, we get inequality (24) with the constant §(35).

If max(Z,,,(x X ),lew(yxAy’va ) < é, then we define ¢y > 0 and u > 0 by the equalities

to y
/o <P(V8)w(t)dt:2 and /0 QD(Mo)w(t)dt:%.

We have ¢y < y, ug < § and min(m(A,,,,), m(A,,.,)) > to, where the sets A, and A, are
defined by formulas (26) and (27). By the assumption y, = 0, we can find two positive
constants , and #3 such that 0 < £3 < £5 < %0 and w(t3) > w(t,). Let

t3 h
ti=— and o) = f w(t) dt.
8 0

Itm(Ay,, ) =t orm(A;, ) > ti, wherethesets A} | and A, are defined by formulas

(28) and (29), then analogously as in Case 2, we obtain inequality (30) with the constant
s(25).
In the case when max(m(4; ), ), m(A;, ) < ti, we define the sets By, and By, by

formulas (31) and (32). We have
. 7
mln(m(Bx,u0)7m(By,u0)) >l — 2tl = gtO'

min(t3, 1) g ting th dure from Case 2, putting #; in place of
——>— and repeating the procedure from Case 2, putting t3 in place o

Yo, we get inequality (39) with the constant w.
Summarizing Case 3, we get inequality (20) with

= min(a(l> 5(1””0‘“1) 3apuo(w(t3) —w(@))
= )\ ) s . .

Defining a =
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Theorem 2.5 Let 0 <o <y <00 and 0 < a, = 8. Then the Orlicz-Lorentz function space
Ay is uniformly non-square if and only if ¢ € Ay(00), ¥ € Ay(00), w is regular and o €
(5. 7).

Proof Necessity. Condition o € (%,y) follows from Theorem 2.2, while the necessity of
remaining conditions can be proved as in Theorem 2.4.

Sufficiency. Analogously as in Theorem 2.4, it is enough to show that there exists g > 0
such that inequality (20) holds for any x,y € S(A, ).

First note that the space A, ([0,)), in opposite to the space Ay, = Ay ([0, y)), is uni-
formly monotone (see Theorem 1.2). Hence, by [52, Theorem 6], for all § > 0 there exists
p(8) > 0 such that for any u € B(A,,,([0,))) and any v € A, ,([0,a)) with m{suppu N
suppv} =0 and ||v|| > §, we have

llu+ vl = (1+p(8))llull. (40)
Now, for any fixed x,y € (Ay,,), we denote

’

Ary=1{t€[0,y) : max{|x(s)

y(t)|}>a¢}.

In order to show (20), we will consider two cases.
Case 1. If m(A,,) < a, then we define

x=xo0o0 and y=yoo,
where o : [0,m(A,)) — Ay, is a measure preserving transformation (see [54, Theorem 17,
p.410]). Obviously ¢ 0%, ¢ 0%, ¢ o Z* and ¢ o = are equimeasurable with ¢ o XX Ay

$ 0 YXdyy ¢ © 22 X4, and ¢ o J%XAM, respectively. Therefore, by Theorem 2.4, there
exists g(«) > 0 independent of x and y such that

(222 oo (2 (2
= min(l(p,w (?),Iw,w(%%y)) <1-4g(a).

Case 2. Let now m(A,,) > «. Denote by 1, € N the smallest possible number satisfying

mo (e — y/2) > o and let p(1/2my) be the constant from inequality (40) for § = 1/2m,. Fix
& > 0 satisfying

1 1
(1+p(2—mo>>(1—68)>1 and 8<E. (41)
Since ¥ € A(00), for a, satisfying the equality
/ olas)w(t)dt = ¢,
0

analogously as in Case 1 of Theorem 2.4, we can find = n(a.) € (0,1) such that

1-—
w(%) <o) (42)
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for all 4 > a.. We may assume without loss of generality that

min(lwu (’%)LW(%)) >1-¢. (43)

Applying [16, Property 7°, p.64], we can find sets e, (+) = e, (¢ o (’%)) and e, (=) = ex (@ o

(%)) of measure « such that

/o <<po( 2 )) (t)dt_/;a(+)<p ( 2 )(t)dt,
/0<<po( . )) (t)dt—/ea()ga ( ; )(t)dt.

Let us define the sets

®

A" ={t € eg(+) :max(|x(®)|, |y(1)]) = a.},
Al = {t e A* :x(t)y(t) > 0},
A} ={te A" :x(t)y(t) <0}

and
A" = {t €eq(-) :max(‘x(t) , y(t)‘) > ag},
A7 ={t e A :x(t)y(t) = 0},
Ay ={te A :x(t)y(t) <0}

From [15, Theorem 2.6, p.49] it follows that there are functions #, and #_ both equimea-

surable with w [0 and satisfying the equalities

foa ((p o (’%y))*(t)w(t) di = /w) 9o (’%y)(t)m(t) dt, (44)

foa (w ° (%))?t)w(t)dt: /ea(_)¢ ° (’“z;y)(t)u(t)dt. (45)
By the Hardy-Littlewood inequality, we have

f ¢o (m>(t)u+(t)dt

ca(+)\A* 2

< /0 (wo((’%)xeamw» (Ot Koy a) (Ol < /0 ola)o()di ¢,

whence by (43), we conclude that

/;ﬁ(po <¥>(t)u+(t)dt21—2e. (46)
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Similarly, we get

/ﬁoo (’%)(t)u(t) dt>1-2e. (47)

The remaining part of the proof of Case 2 will be divided into three subcases.
Case 2.1. Suppose fAE Qo (’%)(t)m(t) dt > &. Then

(p((x ”)(t)) p w(max(|x(t)|: Iy(t)|)> L . Mo (®) + (1))

2 2

for m-a.e. t € A]. Hence, by equality (44), we get

0\ (2 _ o(*tY
1(7) -/ w(( . )(t))w(t)dt- /e(,m‘” ( ' )(t)u+(t)dt

% feam\A; {o(x®) + (1) Ju. (D) dt

5 / {o(x®) + (y(®) fu. () dt
43

=<

1
< E{la(+)¢(x(t))u+(t)dt+ /ea(+)go(y(t))u+(t)dt} —ne
1

- ne. (48)

Case 2.2. If fAl_ @o (%)(t)u_(t) dt > ¢, then analogously as above, we can show that

x_
1"""’<Ty> <1- e

Case 2.3. Finally, we will prove that the remaining case

/I‘qawo(¥>(t)u+(t)dt<s and Alwo(x%)(t)u(t)dt<£

is not possible. In the opposite case, by (46) and (47), we get

x+y
/M(po (T)(t)m(t)dtz 1-3¢ and /A

Since A] NA3 =), we can assume without loss of generality that 71(A]) < y/2. Moreover,

by the Hardy-Littlewood inequality and convexity of the modular I, ,, we obtain

1-3s§f goo(“%)(t)m(t)dt
"
m(AT) *
< /0 (w((’%)m)) (8) (a0 ()
m(AT) *
< (w((’%)m)) (oe)dt

0o (’%)(t)u_(t) dt>1-3e.

2
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xX+y 1 1
= I(p,m((T)XAI) < ELp,w(xXAI) + El(p,w(yXAf)

5| weny et 5 [ oy ot
0 0

Since Iy, (%) = I,,(y) =1, s0

m(AT) m(A})
/ ' (@ oxxar) (Ww(t)dt >1-6e and / ' (p oyxas)* (Hw(t)dt > 1 - 6e.
0 0

Similarly,

(49)

m(A3) m(Ay)
/ (poxys;) (Hw(t)dt >1-6e and / (poyxa;)"(Dw(t)dt > 1~ 6e.
0 0

Let €(—y/2) = €(a-y/2)(¢ © Xxa;) C A; be such that m(e-,12)) =& — y/2 and

a—-y/2
| wommywde= [ pomuu@de= [ pown,, 0
0 e(a—y/2) €(a—y/2)

(50)

Then, by the definition of m, the first inequality in (50) and the second inequality in (41),

we get

1-6¢ 1

a-y/2
- *
o 0 %Xe(y sl = /0 (p oxxa;) (Hw(t)dt > o > G

Consequently, by (40) (note that m(supp(¢ o xxXar t¢o xxe(a—y/Z))) <yR+a-y/[2=qa)

and first inequalities of formulas (49) and (41), we obtain
o o
1= / (p(x*(t))a)(t) dt > / (po XXar +¢ oxxe(a_ylz))*(t)a)(t) dt
0 0
1
= lgoxxar + @0 xXey_ypllo = \1+P| 57— ) Jl@ 0 xxat llo
0

2m
> (1 +p<2LmO)>(1 —-6¢)>1,

which is a contradiction.
Summarizing both cases, we get inequality (20) with g = min(g(«), ne).
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