61 research outputs found

    Identification of the Feline Humoral Immune Response to Bartonella henselae Infection by Protein Microarray

    Get PDF
    Background: Bartonella henselae is the zoonotic agent of cat scratch disease and causes potentially fatal infections in immunocompromised patients. Understanding the complex interactions between the host’s immune system and bacterial pathogens is central to the field of infectious diseases and to the development of effective diagnostics and vaccines. Methodology: We report the development of a microarray comprised of proteins expressed from 96 % (1433/1493) of the predicted ORFs encoded by the genome of the zoonotic pathogen Bartonella henselae. The array was probed with a collection of 62 uninfected, 62 infected, and 8 ‘‘specific-pathogen free’ ’ naïve cat sera, to profile the antibody repertoire elicited during natural Bartonella henselae infection. Conclusions: We found that 7.3 % of the B. henselae proteins on the microarray were seroreactive and that seroreactivity was not evenly distributed between predicted protein function or subcellular localization. Membrane proteins were significantly most likely to be seroreactive, although only 23 % of the membrane proteins were reactive. Conversely, we found that proteins involved in amino acid transport and metabolism were significantly underrepresented and did not contain any seroreactive antigens. Of all seroreactive antigens, 52 were differentially reactive with sera from infected cats, and 53 were equally reactive with sera from infected and uninfected cats. Thirteen of the seroreactive antigens were found to be differentially seroreactive between B. henselae type I and type II. Based on these results, we developed a classifier algorith

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd
    • …
    corecore