111 research outputs found
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease
<p>Abstract</p> <p>Background</p> <p>Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (Aβ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD.</p> <p>Methods</p> <p>Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis.</p> <p>Results</p> <p>Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals.</p> <p>Conclusions</p> <p>These data suggest that amyloid dependent microgliosis may be Src kinase dependent <it>in vitro</it> and <it>in vivo.</it> This study defines a role for Src kinase in the microgliosis characteristic of diseased brains and suggests that particular tyrosine kinase inhibition may be a valid anti-inflammatory approach to disease. Dasatinib is an FDA-approved drug for treating chronic myeloid leukemia cancer with a reported ability to cross the blood-brain barrier. Therefore, this suggests a novel use for this drug as well as similar acting molecules.</p
Task-Specific Motor Rehabilitation Therapy After Stroke Improves Performance in a Different Motor Task: Translational Evidence
CD45RB Is a Novel Molecular Therapeutic Target to Inhibit Aβ Peptide-Induced Microglial MAPK Activation
Impact of metal ions on PCR inhibition and RT-PCR efficiency
Inhibition of PCR by metal ions can pose a serious challenge in the process of forensic DNA analysis. Samples contaminated with various types of metal ions encountered at crime scenes include swabs from metal surfaces such as bullets, cartridge casings, weapons (including guns and knives), metal wires and surfaces as well as bone samples which contain calcium. The mechanism behind the impact of metal ions on DNA recovery, extraction and subsequent amplification is not fully understood. In this study, we assessed the inhibitory effects of commonly encountered metals on DNA amplification. Of the nine tested metals, zinc, tin, iron(II) and copper were shown to have the strongest inhibitory properties having IC50 values significantly below 1 mM. In the second part of the study, three commercially available DNA polymerases were tested for their susceptibility to metal inhibition. We found that KOD polymerase was the most resistant to metal inhibition when compared with Q5 and Taq polymerase. We also demonstrate how the calcium chelator ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) can be used as an easy and non-destructive method of reversing calcium-induced inhibition of PCR reactions
Proteomics Comparison of Cerebrospinal Fluid of Relapsing Remitting and Primary Progressive Multiple Sclerosis
Background: Based on clinical representation of disease symptoms multiple sclerosis (MScl) patients can be divided into two major subtypes; relapsing remitting (RR) MScl (85-90%) and primary progressive (PP) MScl (10-15%). Proteomics analysis of cerebrospinal fluid (CSF) has detected a number of proteins that were elevated in MScl patients. Here we specifically aimed to differentiate between the PP and RR subtypes of MScl by comparing CSF proteins. Methodology/Principal Findings: CSF samples (n = 31) were handled according to the same protocol for quantitative mass spectrometry measurements we reported previously. In the comparison of PP MScl versus RR MScl we observed a number of differentially abundant proteins, such as protein jagged-1 and vitamin D-binding protein. Protein jagged-1 was over three times less abundant in PP MScl compared to RR MScl. Vitamin D-binding protein was only detected in the RR MScl samples. These two proteins were validated by independent techniques (western blot and ELISA) as differentially abundant in the comparison between both MScl types. Conclusions/Significance: The main finding of this comparative study is the observation that the proteome profiles of CSF in PP and RR MScl patients overlap to a large extent. Still, a number of differences could be observed. Protein jagged-1 is a ligand for multiple Notch receptors and involved in the mediation of Notch signaling. It is suggested in literature that the Notch pathway is involved in the remyelination of MScl lesions. Aberration of normal homeostasis of Vitamin D, of which approximately 90% is bound to vitamin D-binding protein, has been widely implicated in MScl for some years now. Vitamin D directly and indirectly regulates the differentiation, activation of CD4+ T-lymphocytes and can prevent the development of autoimmune processes, and so it may be involved in neuroprotective elements in MScl
CD36 Participates in PrP106–126-Induced Activation of Microglia
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106–126 (PrP106–126). We first examined the time course of CD36 mRNA expression upon exposure to PrP106–126 in BV2 microglia. We then analyzed different parameters of microglial activation in PrP106–126-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP106–126. The results showed that PrP106–126 treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP106–126-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP106–126-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP106–126 –treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP106–126. Together, these results suggest that CD36 is involved in PrP106–126-induced microglial activation and that the participation of CD36 in the interaction between PrP106–126 and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling
Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus
Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI
Effect of Duration and Intermittency of Rifampin on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis
In a systematic review of randomized controlled trials on tuberculosis treatment, Dick Menzies and colleagues find shorter courses of rifampin to be associated with poorer treatment outcomes
Mechanisms of progression of chronic kidney disease
Chronic kidney disease (CKD) occurs in all age groups, including children. Regardless of the underlying cause, CKD is characterized by progressive scarring that ultimately affects all structures of the kidney. The relentless progression of CKD is postulated to result from a self-perpetuating vicious cycle of fibrosis activated after initial injury. We will review possible mechanisms of progressive renal damage, including systemic and glomerular hypertension, various cytokines and growth factors, with special emphasis on the renin–angiotensin–aldosterone system (RAAS), podocyte loss, dyslipidemia and proteinuria. We will also discuss possible specific mechanisms of tubulointerstitial fibrosis that are not dependent on glomerulosclerosis, and possible underlying predispositions for CKD, such as genetic factors and low nephron number
- …
