19 research outputs found

    European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.

    Get PDF
    © American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio

    Mechanisms of Hearing Loss after Blast Injury to the Ear

    Get PDF
    Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the bodyï¾’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874
    corecore