79 research outputs found

    Kaposi's sarcoma of the hand mimicking squamous cell carcinoma in a woman with no evidence of HIV infection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Kaposi's sarcoma is a vascular neoplasm mainly affecting the skin of the lower extremities. Although it is the most common neoplasm affecting patients with AIDS, sporadic cases in HIV-negative people have been reported. It is a lesion mainly affecting men and its clinical presentation presents a challenge, as it can resemble other benign or malignant skin lesions.</p> <p>Case presentation</p> <p>We report a rare case of Kaposi's sarcoma presenting in a 68-year-old Mediterranean woman with no evidence of HIV infection. The patient had a 6-month history of a slowly progressing pigmented lesion on the dorsum of her left hand. The lesion clinically resembled a squamous cell carcinoma. The patient was treated with a wide excision of the lesion and primary reconstruction with a full thickness skin graft. Histopathological and immunohistochemical analysis of the excised lesion revealed the presence of Kaposi's sarcoma. Serologic investigation for HIV was negative but polymerase chain reaction for human herpes virus type 8 infection was positive. Thorough clinical and imaging investigation of the abdomen and chest were both negative for loci of disease.</p> <p>Conclusion</p> <p>Kaposi's sarcoma, although rare in its sporadic form, should be considered in the differential diagnosis of indeterminate skin lesions, especially those affecting the extremities.</p

    Risk of classic Kaposi sarcoma with exposures to plants and soils in Sicily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecologic and in vitro studies suggest that exposures to plants or soil may influence risk of Kaposi sarcoma (KS).</p> <p>Methods</p> <p>In a population-based study of Sicily, we analyzed data on contact with 20 plants and residential exposure to 17 soils reported by 122 classic KS cases and 840 sex- and age-matched controls. With 88 KS-associated herpesvirus (KSHV) seropositive controls as the referent group, novel correlates of KS risk were sought, along with factors distinguishing seronegatives, in multinomial logistic regression models that included matching variables and known KS cofactors - smoking, cortisone use, and diabetes history. All plants were summed for cumulative exposure. Factor and cluster analyses were used to obtain scores and groups, respectively. Individual plants and soils in three levels of exposure with <it>P</it><sub>trend </sub>≤ 0.15 were retained in a backward elimination regression model.</p> <p>Results</p> <p>Adjusted for known cofactors, KS was not related to cumulative exposures to 20 plants [per quartile adjusted odds ratio (OR<sub>adj</sub>) 0.96, 95% confidence interval (CI) 0.73 - 1.25, <it>P</it><sub>trend </sub>= 0.87], nor was it related to any factor scores or cluster of plants (<it>P </it>= 0.11 to 0.81). In the elimination regression model, KS risk was associated with five plants (<it>P</it><sub>trend </sub>= 0.02 to 0.10) and with residential exposure to six soils (<it>P</it><sub>trend </sub>= 0.01 to 0.13), including three soils (eutric regosol, chromic/pellic vertisol) used to cultivate durum wheat. None of the KS-associated plants and only one soil was also associated with KSHV serostatus. Diabetes was associated with KSHV seronegativity (OR<sub>adj </sub>4.69, 95% CI 1.97 - 11.17), but the plant and soil associations had little effect on previous findings that KS risk was elevated for diabetics (OR<sub>adj </sub>7.47, 95% CI 3.04 - 18.35) and lower for current and former smokers (OR<sub>adj </sub>0.26 and 0.47, respectively, <it>P</it><sub>trend </sub>= 0.05).</p> <p>Conclusions</p> <p>KS risk was associated with exposure to a few plants and soils, but these may merely be due to chance. Study of the effects of durum wheat, which was previously associated with cKS, may be warranted.</p

    Comparison between human fetal and adult skin

    Get PDF
    Healing of early-gestation fetal wounds results in scarless healing. Since the capacity for regeneration is probably inherent to the fetal skin itself, knowledge of the fetal skin composition may contribute to the understanding of fetal wound healing. The aim of this study was to analyze the expression profiles of different epidermal and dermal components in the human fetal and adult skin. In the human fetal skin (ranging from 13 to 22 weeks’ gestation) and adult skin biopsies, the expression patterns of several epidermal proteins (K10, K14, K16, K17, SKALP, involucrin), basement membrane proteins, Ki-67, blood vessels and extracellular matrix proteins (fibronectin, chondroitin sulfate, elastin) were determined using immunohistochemistry. The expression profiles of K17, involucrin, dermal Ki-67, fibronectin and chondroitin sulfate were higher in the fetal skin than in adult skin. In the fetal skin, elastin was not present in the dermis, but it was found in the adult skin. The expression patterns of basement membrane proteins, blood vessels, K10, K14, K16 and epidermal Ki-67 were similar in human fetal skin and adult skin. In this systematic overview, most of the differences between fetal and adult skin were found at the level of dermal extracellular matrix molecules expression. This study suggests that, especially, dermal components are important in fetal scarless healing

    Identification of Novel Mt-Guab2 Inhibitor Series Active against M. tuberculosis

    Get PDF
    Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD+). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 µg mL−1. Among the identified ligands, two inhibitors have nanomolar Kis against the Mt-GuaB2 enzyme

    Acetate Causes Alcohol Hangover Headache in Rats

    Get PDF
    Background: The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache. Methods: We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats. Results: Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia), followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity. Discussion: Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction

    Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    Get PDF
    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases

    Genomic Expression Analysis Reveals Strategies of Burkholderia cenocepacia to Adapt to Cystic Fibrosis Patients' Airways and Antimicrobial Therapy

    Get PDF
    Pulmonary colonization of cystic fibrosis (CF) patients with Burkholderia cenocepacia or other bacteria of the Burkholderia cepacia complex (Bcc) is associated with worse prognosis and increased risk of death. During colonization, the bacteria may evolve under the stressing selection pressures exerted in the CF lung, in particular, those resulting from challenges of the host immune defenses, antimicrobial therapy, nutrient availability and oxygen limitation. Understanding the adaptive mechanisms that promote successful colonization and long-term survival of B. cenocepacia in the CF lung is essential for an improved therapeutic outcome of chronic infections. To get mechanistic insights into these adaptive strategies a transcriptomic analysis, based on DNA microarrays, was explored in this study. The genomic expression levels in two clonal variants isolated during long-term colonization of a CF patient who died from the cepacia syndrome were compared. One of the isolates examined, IST439, is the first B. cenocepacia isolate retrieved from the patient and the other isolate, IST4113, was obtained three years later and is more resistant to different classes of antimicrobials. Approximately 1000 genes were found to be differently expressed in the two clonal variants reflecting a marked reprogramming of genomic expression. The up-regulated genes in IST4113 include those involved in translation, iron uptake (in particular, in ornibactin biosynthesis), efflux of drugs and in adhesion to epithelial lung tissue and to mucin. Alterations related with adaptation to the nutritional environment of the CF lung and to an oxygen-limited environment are also suggested to be a key feature of transcriptional reprogramming occurring during long-term colonization, antibiotic therapy and the progression of the disease

    Branch Migration Prevents DNA Loss during Double-Strand Break Repair

    Get PDF
    The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes
    • …
    corecore