19 research outputs found
A dual function TAR Decoy serves as an anti-HIV siRNA delivery vehicle
The TAR RNA of HIV was engineered as an siRNA delivery vehicle to develop a combinatorial therapeutic approach. The TAR backbone was found to be a versatile backbone for expressing siRNAs. Upon expression in human cells, pronounced and specific inhibition of reporter gene expression was observed with TARmiR. The resulting TARmiR construct retained its ability to bind Tat and mediate RNAi. TARmiR was able to inhibit HIV gene expression as a TAR decoy and by RNA interference when challenged with infectious proviral DNA. The implications of this dual function therapeutic would be discussed
Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling
Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways.Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress.Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy
The Efficacy of Generating Three Independent Anti-HIV-1 siRNAs from a Single U6 RNA Pol III-Expressed Long Hairpin RNA
RNA Interference (RNAi) effectors have been used to inhibit rogue RNAs in mammalian cells. However, rapidly evolving sequences such as the human immunodeficiency virus type 1 (HIV-1) require multiple targeting approaches to prevent the emergence of escape variants. Expressed long hairpin RNAs (lhRNAs) have recently been used as a strategy to produce multiple short interfering RNAs (siRNAs) targeted to highly variant sequences. We aimed to characterize the ability of expressed lhRNAs to generate independent siRNAs that silence three non-contiguous HIV-1 sites by designing lhRNAs comprising different combinations of siRNA-encoding sequences. All lhRNAs were capable of silencing individual target sequences. However, silencing efficiency together with concentrations of individual lhRNA-derived siRNAs diminished from the stem base (first position) towards the loop side of the hairpin. Silencing efficacy against HIV-1 was primarily mediated by siRNA sequences located at the base of the stem. Improvements could be made to first and second position siRNAs by adjusting spacing arrangements at their junction, but silencing of third position siRNAs remained largely ineffective. Although lhRNAs offer advantages for combinatorial RNAi, we show that good silencing efficacy across the span of the lhRNA duplex is difficult to achieve with sequences that encode more than two adjacent independent siRNAs
Soluble adenylyl cyclase mediates hydrogen peroxide-induced changes in epithelial barrier function
RNA interference approaches for treatment of HIV-1 infection
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery
TGF-β1 increases viral burden and promotes HIV-1 latency in primary differentiated human bronchial epithelial cells
Probing tumor phenotypes using stable and regulated synthetic microRNA precursors
RNA interference is a powerful method for suppressing gene expression in mammalian cells. Stable knock-down can be achieved by continuous expression of synthetic short hairpin RNAs, typically from RNA polymerase III promoters. But primary microRNA transcripts, which are endogenous triggers of RNA interference, are normally synthesized by RNA polymerase II. Here we show that RNA polymerase II promoters expressing rationally designed primary microRNA-based short hairpin RNAs produce potent, stable and regulatable gene knock-down in cultured cells and in animals, even when present at a single copy in the genome. Most notably, by tightly regulating Trp53 knock-down using tetracycline-based systems, we show that cultured mouse fibroblasts can be switched between proliferative and senescent states and that tumors induced by Trp53 suppression and cooperating oncogenes regress upon re-expression of Trp53. In practice, this primary microRNA-based short hairpin RNA vector system is markedly similar to cDNA overexpression systems and is a powerful tool for studying gene function in cells and animals
