40 research outputs found

    A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma.

    Get PDF
    Aberrant epidermal growth factor receptor (EGFR) signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased tumor necrosis factor (TNF) secretion, which leads to activation in turn of c-Jun N-terminal kinase (JNK), the Axl receptor tyrosine kinase and extracellular signal-regulated kinases (ERK). Inhibition of this adaptive axis at multiple nodes rendered glioma cells with primary resistance sensitive to EGFR inhibition. Our findings provide a possible explanation for the failures of anti-EGFR therapy in GBM and suggest a new approach to the treatment of EGFR-expressing GBM using a combination of EGFR and TNF inhibition

    Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson’s disease

    Get PDF
    BACKGROUND: Parkinson’s disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling. METHODS: In order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks. RESULTS: Lenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation. CONCLUSION: These results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0320-x) contains supplementary material, which is available to authorized users

    A Lagrangian mixed layer model of Atlantic 18 C water formation

    No full text
    One of the most striking features of the upper North Atlantic Ocean is an extensive layer of water with temperature close to 18°C and salinity close to 36.5‰, (ref. 1). This 18°C water is formed by winter convection in the Sargasso sea2,3, but aspects of the annual rate of 18°C water formation remain obscure4. We have simulated this water mass formation by integrating a one-dimensional model along a 4-yr trajectory of a water column circulating around the Sargasso Sea. Winter convection is deep (≥200 m) in regions where the ocean suffers a net annual heat loss to the atmosphere, and shallow (≤lOOm) where the ocean gains heat each year. The origin of the thermostad (nearly isothermal layer) is a thick layer of nearly homogeneous water subducted beneath the seasonal boundary layer in the year that the water column passes through the line dividing annual cooling from annual heating. We estimate the annual production of 18°C water to be 446,000 km3 yr−1. Downstream, more stratified central water is formed each year at a rate that depends more on Ekman pumping (wind-forced convergence) than on the decreasing depth of winter convectio

    Targeting EGFR Induced Oxidative Stress by PARP1 Inhibition in Glioblastoma Therapy

    Get PDF
    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis [1], [2], EGFR targeted therapies have achieved limited clinical efficacy [3]. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction [4], [5]. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII [6], an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design
    corecore