18 research outputs found

    Using an Uncertainty-Coding Matrix in Bayesian Regression Models for Haplotype-Specific Risk Detection in Family Association Studies

    Get PDF
    Haplotype association studies based on family genotype data can provide more biological information than single marker association studies. Difficulties arise, however, in the inference of haplotype phase determination and in haplotype transmission/non-transmission status. Incorporation of the uncertainty associated with haplotype inference into regression models requires special care. This task can get even more complicated when the genetic region contains a large number of haplotypes. To avoid the curse of dimensionality, we employ a clustering algorithm based on the evolutionary relationship among haplotypes and retain for regression analysis only the ancestral core haplotypes identified by it. To integrate the three sources of variation, phase ambiguity, transmission status and ancestral uncertainty, we propose an uncertainty-coding matrix which combines these three types of variability simultaneously. Next we evaluate haplotype risk with the use of such a matrix in a Bayesian conditional logistic regression model. Simulation studies and one application, a schizophrenia multiplex family study, are presented and the results are compared with those from other family based analysis tools such as FBAT. Our proposed method (Bayesian regression using uncertainty-coding matrix, BRUCM) is shown to perform better and the implementation in R is freely available

    Inverse Association between Methylation of Human Papillomavirus Type 16 DNA and Risk of Cervical Intraepithelial Neoplasia Grades 2 or 3

    Get PDF
    The clinical relevance of human papillomavirus type 16 (HPV16) DNA methylation has not been well documented, although its role in modulation of viral transcription is recognized.Study subjects were 211 women attending Planned Parenthood clinics in Western Washington for routine Papanicolaou screening who were HPV16 positive at the screening and/or subsequent colposcopy visit. Methylation of 11 CpG dinucleotides in the 3' end of the long control region of the HPV16 genome was examined by sequencing the cloned polymerase chain reaction products. The association between risk of CIN2/3 and degree of CpG methylation was estimated using a logistic regression model.CIN2/3 was histologically confirmed in 94 (44.5%) of 211 HPV16 positive women. The likelihood of being diagnosed as CIN2/3 increased significantly with decreasing numbers of methylated CpGs (meCpGs) in the 3' end of the long control region (P(for trend)β€Š=β€Š0.003). After adjusting for HPV16 variants, number of HPV16-positive visits, current smoking status and lifetime number of male sex partners, the odds ratio for the association of CIN2/3 with β‰₯4 meCpGs was 0.31 (95% confidence interval, 0.12-0.79). The proportion of β‰₯4 meCpGs decreased appreciably as the severity of the cervical lesion increased (P(for trend)β€Š=β€Š0.001). The inverse association remained similar when CIN3 was used as the clinical endpoint. Although not statistically significant, the β‰₯4 meCpGs-related risk reduction was more substantial among current, as compared to noncurrent, smokers.Results suggest that degree of the viral genome methylation is related to the outcome of an HPV16 cervical infection

    The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish

    Get PDF
    Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators

    A Data-Driven Exploration of Hypotheses on Disease Dynamics

    No full text
    Contains fulltext : 204567.pdf (publisher's version ) (Closed access)Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 201
    corecore