47 research outputs found

    Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control

    Get PDF
    Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar ‘superfolded’ proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues

    The Feasibility of performing resistance exercise with acutely ill hospitalized older adults

    Get PDF
    BACKGROUND: For older adults, hospitalization frequently results in deterioration of mobility and function. Nevertheless, there are little data about how older adults exercise in the hospital and definitive studies are not yet available to determine what type of physical activity will prevent hospital related decline. Strengthening exercise may prevent deconditioning and Pilates exercise, which focuses on proper body mechanics and posture, may promote safety. METHODS: A hospital-based resistance exercise program, which incorporates principles of resistance training and Pilates exercise, was developed and administered to intervention subjects to determine whether acutely-ill older patients can perform resistance exercise while in the hospital. Exercises were designed to be reproducible and easily performed in bed. The primary outcome measures were adherence and participation. RESULTS: Thirty-nine ill patients, recently admitted to an acute care hospital, who were over age 70 [mean age of 82.0 (SD= 7.3)] and ambulatory prior to admission, were randomized to the resistance exercise group (19) or passive range of motion (ROM) group (20). For the resistance exercise group, participation was 71% (p = 0.004) and adherence was 63% (p = 0.020). Participation and adherence for ROM exercises was 96% and 95%, respectively. CONCLUSION: Using a standardized and simple exercise regimen, selected, ill, older adults in the hospital are able to comply with resistance exercise. Further studies are needed to determine if resistance exercise can prevent or treat hospital-related deterioration in mobility and function

    Phosphorylation State-Dependent Interactions of Hepadnavirus Core Protein with Host Factors

    Get PDF
    Dynamic phosphorylation and dephosphorylation of the hepadnavirus core protein C-terminal domain (CTD) are required for multiple steps of the viral life cycle. It remains unknown how the CTD phosphorylation state may modulate core protein functions but phosphorylation state-dependent viral or host interactions may play a role. In an attempt to identify host factors that may interact differentially with the core protein depending on its CTD phosphorylation state, pulldown assays were performed using the CTD of the duck hepatitis B virus (DHBV) and human hepatitis B virus (HBV) core protein, either with wild type (WT) sequences or with alanine or aspartic acid substitutions at the phosphorylation sites. Two host proteins, B23 and I2PP2A, were found to interact preferentially with the alanine-substituted CTD. Furthermore, the WT CTD became competent to interact with the host proteins upon dephosphorylation. Intriguingly, the binding site on the DHBV CTD for both B23 and I2PP2A was mapped to a region upstream of the phosphorylation sites even though B23 or I2PP2A binding to this site was clearly modulated by the phosphorylation state of the downstream and non-overlapping sequences. Together, these results demonstrate a novel mode of phosphorylation-regulated protein-protein interaction and provide new insights into virus-host interactions

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease.

    Get PDF
    Primary sclerosing cholangitis (PSC) is a rare progressive disorder leading to bile duct destruction; ∼75% of patients have comorbid inflammatory bowel disease (IBD). We undertook the largest genome-wide association study of PSC (4,796 cases and 19,955 population controls) and identified four new genome-wide significant loci. The most associated SNP at one locus affects splicing and expression of UBASH3A, with the protective allele (C) predicted to cause nonstop-mediated mRNA decay and lower expression of UBASH3A. Further analyses based on common variants suggested that the genome-wide genetic correlation (rG) between PSC and ulcerative colitis (UC) (rG = 0.29) was significantly greater than that between PSC and Crohn's disease (CD) (rG = 0.04) (P = 2.55 × 10-15). UC and CD were genetically more similar to each other (rG = 0.56) than either was to PSC (P < 1.0 × 10-15). Our study represents a substantial advance in understanding of the genetics of PSC
    corecore