25 research outputs found

    Backbone and side chain 1H, 15N and 13C assignments for a thiol-disulphide oxidoreductase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125

    Get PDF
    Enzymes produced by psychrophilic organisms have successfully overcome the low temperature challenge and evolved to maintain high catalytic rates in their permanently cold environments. As an initial step in our attempt to elucidate the cold-adaptation strategies used by these enzymes we report here the 1H, 15N and 13C assignments for the reduced form of a thiol-disulphide oxidoreductase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.The NMR spectrometers are part of The National NMR Network (REDE/1517/RMN/2005), supported by ‘‘Programa Operacional Ciência e Inovação (POCTI) 2010’’ and Fundação para a Ciência e a Tecnologia (FCT). This work was funded by FCT, POCTI and FEDER; Projects POCI/BIA-PRO/57263/2004 and PTDC/BIO/70806/2006. TC is holder of a long term EMBO fellowship. MM is thankful to the Fundação para a Ciência e Tecnologia for its support through Programa Ciência 2007.info:eu-repo/semantics/publishedVersio

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution

    A Network-Based Approach to Prioritize Results from Genome-Wide Association Studies

    Get PDF
    Genome-wide association studies (GWAS) are a valuable approach to understanding the genetic basis of complex traits. One of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions (NIMMI), a network-based method that combines GWAS data with human protein-protein interaction data (PPI). NIMMI builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call ‘trait prioritized sub-networks.’ As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also tested NIMMI on a categorical phenotype, Crohn’s disease. NIMMI prioritized sub-networks involved in B- and T-cell receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn’s disease. NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological networks, translating GWAS findings into biological hypotheses

    Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Get PDF
    BACKGROUND: Metabolic phenotyping has become an important 'bird's-eye-view' technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of 'top-down' chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. METHODOLOGY/PRINCIPAL FINDINGS: The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 (1)H and (13)C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each (13)C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient (13)C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. CONCLUSIONS/SIGNIFICANCE: Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of (13)C atoms of given metabolites on development-dependent changes in the 56 identified (13)C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe

    Structure of reduced DsbA from Escherichia coli in solution

    No full text
    The three-dimensional structure of reduced DsbA from Escherichia coli in aqueous solution has been determined by nuclear magnetic resonance (NMR) spectroscopy and is compared with the crystal structure of oxidized DsbA [Guddat, L. W., Bardwell, J. C. A., Zander, T., and Martin, J. L. (1997) Protein Sci. 6, 1148-1156]. DsbA is a monomeric 21 kDa protein which consists of 189 residues and is required for disulfide bond formation in the periplasm of E. coli. On the basis of sequence-specific H-1 NMR assignments, 1664 nuclear Overhauser enhancement distance constraints, 118 hydrogen bond distance constraints, and 293 dihedral angle constraints were obtained as the input for the structure calculations by simulated annealing with the program X-PLOR. The enzyme is made up of two domains. The catalytic domain has a thioredoxin-like fold with a five-stranded beta-sheet and three alpha-helices, and the second domain consists of four alpha-helices and is inserted into the thioredoxin motif. The active site between Cys30 and Cys33 is located at the N terminus of the first alpha-helix in the thioredoxin-like domain. The solution structure of reduced DsbA is rather similar to the crystal structure of the oxidized enzyme but exhibits a different relative orientation of both domains. In addition, the conformations of the active site and a loop between strand beta 5 and helix alpha 7 are slightly different. These structural differences may reflect important functional requirements in the reaction cycle of DsbA as they appear to facilitate the release of oxidized polypeptides from reduced DsbA. The extremely low pK(a) value of the nucleophilic active site thiol of Cys30 in reduced DsbA is most likely caused by its interactions with the dipole of the active site helix and the side chain of His32, as no other charged residues are located next to the sulfur atom of Cys30 in the solution structure

    Can atorvastatin with metformin change the natural history of prostate cancer as characterized by molecular, metabolomic, imaging and pathological variables? A randomized controlled trial protocol.

    Full text link
    BACKGROUND: Atorvastatin and metformin are known energy restricting mimetic agents that act synergistically to produce molecular and metabolic changes in advanced prostate cancer (PCa). This trial seeks to determine whether these drugs favourably alter selected parameters in men with clinically-localized, aggressive PCa. METHODS/DESIGN: This prospective phase II randomized, controlled window trial is recruiting men with clinically significant PCa, confirmed by biopsy following multiparametric MRI and intending to undergo radical prostatectomy. Ethical approval was granted by the Royal Brisbane and Women's Hospital Human and The University of Queensland Medical Research Ethics Committees. Participants are being randomized into four groups: metformin with placebo; atorvastatin with placebo; metformin with atorvastatin; or placebo alone. Capsules are consumed for 8weeks, a duration selected as the most appropriate period in which histological and biochemical changes may be observed while allowing prompt treatment with curative intent of clinically significant PCa. At recruitment and prior to RP, participants provide blood, urine and seminal fluid. A subset of participants will undergo 7Tesla magnetic resonance spectroscopy to compare metabolites in-vivo with those in seminal fluid and biopsied tissue. The primary end point is biochemical evolution, defined using biomarkers (serum prostate specific antigen; PCA3 and citrate in seminal fluid and prostatic tissue). Standard pathological assessment will be undertaken. DISCUSSION: This study is designed to assess the potential synergistic action of metformin and atorvastatin on PCa tumour biology. The results may determine simple methods of tumour modulation to reduce disease progression

    Hyperglycaemic clamp test for diabetes risk assessment in IA-2-antibody-positive relatives of type 1 diabetic patients

    Full text link
    AIMS/HYPOTHESIS: The aim of the study was to investigate the use of hyperglycaemic clamp tests to identify individuals who will develop diabetes among insulinoma-associated protein-2 antibody (IA-2A)-positive first-degree relatives (IA-2A(+) FDRs) of type 1 diabetic patients. METHODS: Hyperglycaemic clamps were performed in 17 non-diabetic IA-2A(+) FDRs aged 14 to 33 years and in 21 matched healthy volunteers (HVs). Insulin and C-peptide responses were measured during the first (5-10 min) and second (120-150 min) release phase, and after glucagon injection (150-160 min). Clamp-induced C-peptide release was compared with C-peptide release during OGTT. RESULTS: Seven (41%) FDRs developed diabetes 3-63 months after their initial clamp test. In all phases they had lower C-peptide responses than non-progressors (p < 0.05) and HVs (p < 0.002). All five FDRs with low first-phase release also had low second-phase release and developed diabetes 3-21 months later. Two of seven FDRs with normal first-phase but low second-phase release developed diabetes after 34 and 63 months, respectively. None of the five FDRs with normal C-peptide responses in all test phases has developed diabetes so far (follow-up 56 to 99 months). OGTT-induced C-peptide release also tended to be lower in progressors than in non-progressors or HVs, but there was less overlap in results between progressors and the other groups using the clamp. CONCLUSIONS/INTERPRETATION: Clamp-derived functional variables stratify risk of diabetes in IA-2A(+) FDRs and may more consistently identify progressors than OGTT-derived variables. A low first-phase C-peptide response specifically predicts impending diabetes while a low second-phase response may reflect an earlier disease stag
    corecore