1,869 research outputs found

    Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31

    Get PDF
    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (alpha-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C-terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while alpha-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody alpha-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.published_or_final_versio

    Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: The Korean Sarcopenic Obesity Study (KSOS)

    Get PDF
    Objectives: Sarcopenia and visceral obesity have been suggested to aggravate each other, resulting in a vicious cycle. However, evidence based on prospective study is very limited. Our purpose was to investigate whether visceral fat promotes a decrease in skeletal muscle mass and vice versa. Methods: We observed changes in anthropometric and body composition data during a follow-up period of 27.6±2.8 months in 379 Korean men and women (mean age 51.9±14.6 years) from the Korean Sarcopenic Obesity Study (KSOS). Appendicular lean soft tissue (ALST) mass was calculated using dual-energy X-ray absorptiometry, and visceral fat area (VFA) was measured using computed tomography at baseline and follow-up examination. Results: ALST mass significantly decreased, whereas trunk and total fat mass increased in both men and women despite no significant change in weight and body mass index. In particular, women with visceral obesity at baseline had a greater decrease in ALST mass than those without visceral obesity (P=0.001). In multiple linear regression analysis, baseline VFA was an independent negative predictor of the changes in ALST after adjusting for confounding factors including age, gender, life style and body composition parameters, insulin resistance, high sensitivity C-reactive protein and vitamin D levels (P=0.001), whereas the association between baseline ALST mass and changes in VFA was not statistically significant (P=0.555). Conclusions: This longitudinal study showed that visceral obesity was associated with future loss of skeletal muscle mass in Korean adults. These results may provide novel insight into sarcopenic obesity in an aging society

    High capacity cathode materials for Li-S batteries

    Full text link
    To enhance the stability of sulfur cathode for a high energy lithium-sulfur battery, sulfur-activated carbon (S-AC) composite was prepared by encapsulating sulfur into micropores of activated carbon using a solution-based processing technique. In the analysis using the prepared specimen of S-AC composite by the focused ion beam (FIB) technique, the elemental sulfur exists in a highly dispersed state inside the micropores of activated carbon, which has a large surface area and a narrow pore distribution. The S-AC composite was characterized through X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method, selected area electron diffraction (SAED), energy dispersive X-ray spectrometry (EDX), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and field emission scanning electron microscopy (FESEM). A lithium-sulfur cell using the S-AC composite has a high first discharge capacity over 800 mA h g -1 S even at a high current density such as 2C (3200 mA g -1 S) and has good cycleability around 500 mA h g-1 S discharge capacity at the 50th cycle at the same current density. © 2013 The Royal Society of Chemistry

    Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance

    Get PDF
    We report on the nanosheet-thickness effects on the performance of top-gate MoS2 field-effect transistors (FETs), which is directly related to the MoS2 dielectric constant. Our top-gate nanosheet FETs with 40 nm thin Al2O3 displayed at least an order of magnitude higher mobility than those of bottom-gate nanosheet FETs with 285 nm thick SiO2, benefiting from the dielectric screening by high-k Al2O3. Among the top-gate devices, the single-layered FET demonstrated the highest mobility of similar to 170 cm(2) V-1 s(-1) with 90 mV dec(-1) as the smallest subthreshold swing (SS) but the double-and triple-layered FETs showed only similar to 25 and similar to 15 cm(2) V-1 s(-1) respectively with the large SS of 0.5 and 1.1 V dec(-1). Such property degradation with MoS2 thickness is attributed to its dielectric constant increase, which could rather reduce the benefits from the top-gate high-k dielectric.open115353Nsciescopu

    Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery

    Get PDF
    A carbon nanotube [CNT]/Co3O4 composite is introduced as a catalyst for the air electrode of lithium-air [Li/air] batteries. Co3O4 nanoparticles are successfully attached to the sidewall of the CNT by a hydrothermal method. A high discharge capacity and a low overvoltage indicate that the CNT/Co3O4 composite is a very promising catalyst for the air electrode of Li/air batteries

    Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: its usefulness according to histological type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopic treatments, such as endoscopic submucosal dissection (ESD) and laparoscopic gastrectomy, are increasingly used to treat a subset of patients with early gastric cancer (EGC). To achieve successful outcomes, it is very important to accurately determine the lateral extent of the tumor. Therefore, we investigated the diagnostic performance of chromoendoscopy using indigo carmine dye added to acetic acid (AI chromoendoscopy) in delineating differentiated or undifferentiated adenocarcinomas in patients with EGC.</p> <p>Methods</p> <p>We prospectively included 151 lesions of 141 patients that had an endoscopic diagnosis of EGC. All the lesions were examined by conventional endoscopy and AI chromoendoscopy before ESD or laparoscopic gastrectomy. The border clarification between the lesion and the normal mucosa was classified as distinct or indistinct before and after AI chromoendoscopy.</p> <p>Results</p> <p>The borders of the lesions were distinct in 66.9% (101/151) with conventional endoscopy and in 84.1% (127/151) with AI chromoendoscopy (<it>P </it>< 0.001). Compared with conventional endoscopy, AI chromoendoscopy clarified the border in a significantly higher percentage of differentiated adenocarcinomas (74/108 [68.5%] vs 97/108 [89.8%], respectively, <it>P </it>< 0.001). However, the border clarification rate for undifferentiated adenocarcinomas did not differ between conventional endoscopy and AI chromoendoscopy (27/43 [62.8%] vs 30/43 [70.0%], respectively, <it>P </it>= 0.494).</p> <p>Conclusions</p> <p>AI chromoendoscopy is useful in determining the lateral extent of EGCs. However, its usefulness is reduced in undifferentiated adenocarcinomas.</p

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (&lt;1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode
    • 

    corecore