210 research outputs found

    Recruiting a New Substrate for Triacylglycerol Synthesis in Plants: The Monoacylglycerol Acyltransferase Pathway

    Get PDF
    BACKGROUND: Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes

    Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Get PDF
    BACKGROUND: Metabolic phenotyping has become an important 'bird's-eye-view' technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of 'top-down' chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. METHODOLOGY/PRINCIPAL FINDINGS: The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 (1)H and (13)C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each (13)C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient (13)C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. CONCLUSIONS/SIGNIFICANCE: Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of (13)C atoms of given metabolites on development-dependent changes in the 56 identified (13)C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism

    The Light Responsive Transcriptome of the Zebrafish: Function and Regulation

    Get PDF
    Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or “entrained” by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression

    A systematic review of the role of vitamin insufficiencies and supplementation in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary inflammation, oxidants-antioxidants imbalance, as well as innate and adaptive immunity have been proposed as playing a key role in the development of COPD. The role of vitamins, as assessed either by food frequency questionnaires or measured in serum levels, have been reported to improve pulmonary function, reduce exacerbations and improve symptoms. Vitamin supplements have therefore been proposed to be a potentially useful additive to COPD therapy.</p> <p>Methods</p> <p>A systematic literature review was performed on the association of vitamins and COPD. The role of vitamin supplements in COPD was then evaluated.</p> <p>Conclusions</p> <p>The results of this review showed that various vitamins (vitamin C, D, E, A, beta and alpha carotene) are associated with improvement in features of COPD such as symptoms, exacerbations and pulmonary function. High vitamin intake would probably reduce the annual decline of FEV1. There were no studies that showed benefit from vitamin supplementation in improved symptoms, decreased hospitalization or pulmonary function.</p

    The RNA Polymerase PB2 Subunit of Influenza A/HongKong/156/1997 (H5N1) Restrict the Replication of Reassortant Ribonucleoprotein Complexes

    Get PDF
    BACKGROUND: Genetic reassortment plays a critical role in the generation of pandemic strains of influenza virus. The influenza virus RNA polymerase, composed of PB1, PB2 and PA subunits, has been suggested to influence the efficiency of genetic reassortment. However, the role of the RNA polymerase in the genetic reassortment is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we reconstituted reassortant ribonucleoprotein (RNP) complexes, and demonstrated that the PB2 subunit of A/HongKong/156/1997 (H5N1) [HK PB2] dramatically reduced the synthesis of mRNA, cRNA and vRNA when introduced into the polymerase of other influenza strains of H1N1 or H3N2. The HK PB2 had no significant effect on the assembly of the polymerase trimeric complex, or on promoter binding activity or replication initiation activity in vitro. However, the HK PB2 was found to remarkably impair the accumulation of RNP. This impaired accumulation and activity of RNP was fully restored when four amino acids at position 108, 508, 524 and 627 of the HK PB2 were mutated. CONCLUSIONS/SIGNIFICANCE: Overall, we suggest that the PB2 subunit of influenza polymerase might play an important role for the replication of reassortant ribonucleoprotein complexes

    Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs

    Get PDF
    The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs

    Evidence for an Essential Deglycosylation-Independent Activity of PNGase in Drosophila melanogaster

    Get PDF
    BACKGROUND: Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. PRINCIPAL FINDINGS: In this study, we characterized the ortholog of cytoplasmic PNGases, PNGase-like (Pngl), in Drosophila melanogaster. Pngl was found to have a molecular weight of approximately 74K and was mainly localized in the cytosol. Pngl lacks a CXXC motif that is critical for enzymatic activity in other species and accordingly did not appear to possess PNGase activity, though it still retains carbohydrate-binding activity. We generated microdeletions in the Pngl locus in order to investigate the functional importance of this protein in vivo. Elimination of Pngl led to a serious developmental delay or arrest during the larval and pupal stages, and surviving mutant adult males and females were frequently sterile. Most importantly, these phenotypes were rescued by ubiquitous expression of Pngl, clearly indicating that those phenotypic consequences were indeed due to the lack of functional Pngl. Interestingly, a putative "catalytic-inactive" mutant could not rescue the growth-delay phenotype, indicating that a biochemical activity of this protein is important for its biological function. CONCLUSION: Pngl was shown to be inevitable for the proper developmental transition and the biochemical properties other than deglycosylation activity is important for its biological function

    Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the eminent opportunities afforded by modern genomic technologies is the potential to provide a mechanistic understanding of the processes by which genetic change translates to phenotypic variation and the resultant appearance of distinct physiological traits. Indeed much progress has been made in this area, particularly in biomedicine where functional genomic information can be used to determine the physiological state (e.g., diagnosis) and predict phenotypic outcome (e.g., patient survival). Ecology currently lacks an analogous approach where genomic information can be used to diagnose the presence of a given physiological state (e.g., stress response) and then predict likely phenotypic outcomes (e.g., stress duration and tolerance, fitness).</p> <p>Results</p> <p>Here, we demonstrate that a compendium of genomic signatures can be used to classify the plant abiotic stress phenotype in <it>Arabidopsis </it>according to the architecture of the transcriptome, and then be linked with gene coexpression network analysis to determine the underlying genes governing the phenotypic response. Using this approach, we confirm the existence of known stress responsive pathways and marker genes, report a common abiotic stress responsive transcriptome and relate phenotypic classification to stress duration.</p> <p>Conclusion</p> <p>Linking genomic signatures to gene coexpression analysis provides a unique method of relating an observed plant phenotype to changes in gene expression that underlie that phenotype. Such information is critical to current and future investigations in plant biology and, in particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological responses to abiotic stress can provide researchers with a tool of great predictive value in understanding species and population level adaptation to climate change.</p
    corecore