1,566 research outputs found

    Holographic three-point functions of giant gravitons

    Get PDF
    Working within the AdS/CFT correspondence we calculate the three-point function of two giant gravitons and one pointlike graviton using methods of semiclassical string theory and considering both the case where the giant gravitons wrap an S^3 in S^5 and the case where the giant gravitons wrap an S^3 in AdS_5. We likewise calculate the correlation function in N=4 SYM using two Schur polynomials and a single trace chiral primary. We find that the gauge and string theory results have structural similarities but do not match perfectly, and interpret this in terms of the Schur polynomials' inability to interpolate between dual giant and pointlike gravitons.Comment: 21 page

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    Get PDF
    It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33 % more) and high (50 %) object’s breaking force. The time to complete the task was not different between settings during successful manipulation trials. In conclusion: high cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs

    Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity

    Full text link
    This article will give an overview on both theoretical and experimental developments concerning states with lattice symmetry breaking in the cuprate high-temperature superconductors. Recent experiments have provided evidence for states with broken rotation as well as translation symmetry, and will be discussed in terms of nematic and stripe physics. Of particular importance here are results obtained using the techniques of neutron and x-ray scattering and scanning tunneling spectroscopy. Ideas on the origin of lattice-symmetry-broken states will be reviewed, and effective models accounting for various experimentally observed phenomena will be summarized. These include both weak-coupling and strong-coupling approaches, with a discussion on their distinctions and connections. The collected experimental data indicate that the tendency toward uni-directional stripe-like ordering is common to underdoped cuprates, but becomes weaker with increasing number of adjacent CuO_2 layers.Comment: Review article prepared for Adv. Phys., 66 pg, 22 figs. Comments welcome, (v2) extensions and clarifications, added references, final version to be publishe

    Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population

    Get PDF
    We recently reported the results of a genome-wide association study (GWAS) of schizophrenia in the Japanese population. In that study, a single nucleotide polymorphism (SNP) (rs3106653) in the KCNJ3 (potassium inwardly rectifying channel, subfamily J, member 3) gene located at 2q24.1 showed association with schizophrenia in two independent sample sets. KCNJ3, also termed GIRK1 or Kir3.1, is a member of the G protein-activated inwardly rectifying K+ channel (GIRK) group. GIRKs are widely distributed in the brain and play an important role in regulating neural excitability through the activation of various G protein-coupled receptors. In this study, we set out to examine this association using a different population. We first performed a gene-centric association study of the KCNJ3 gene, by genotyping 38 tagSNPs in the Chinese population. We detected nine SNPs that displayed significant association with schizophrenia (lowest P = 0.0016 for rs3106658, Global significance = 0.036). The initial marker SNP (rs3106653) examined in our prior GWAS in the Japanese population also showed nominally significant association in the Chinese population (P = 0.028). Next, we analyzed transcript levels in the dorsolateral prefrontal cortex of postmortem brains from patients with schizophrenia and bipolar disorder and from healthy controls, using real-time quantitative RT-PCR. We found significantly lower KCNJ3 expression in postmortem brains from schizophrenic and bipolar patients compared with controls. These data suggest that the KCNJ3 gene is genetically associated with schizophrenia in Asian populations and add further evidence to the “channelopathy theory of psychiatric illnesses”

    The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging.</p> <p>Results</p> <p>The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes), an edge (i.e., reactions, interactions), as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness) of this network to the presence (absence) of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network.</p> <p>Conclusion</p> <p>Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations) from a network. The greatest potential value of this approach is its ability to systematically analyze the role of every element, as well as groups of elements, in a regulatory network.</p

    Pituitary tumor transforming gene-1 haplotypes and risk of pituitary adenoma: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that pituitary adenoma results from accumulation of multiple genetic and/or epigenetic aberrations, which may be identified through association studies. As pituitary tumor transforming gene-1 (<it>PTTG1</it>)/securin plays a critical role in promoting genomic instability in pituitary neoplasia, the present study explored the association of <it>PTTG1 </it>haplotypes with the risk of pituitary adenoma.</p> <p>Methods</p> <p>We genotyped five <it>PTTG1 </it>haplotype-tagging SNPs (htSNP) by PCR-RFLP assays in a case-control study, which included 280 Han Chinese patients diagnosed with pituitary adenoma and 280 age-, gender- and geographically matched Han Chinese controls. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of the htSNPs.</p> <p>Results</p> <p>No significant differences in allele and genotype frequencies of the htSNPs were observed between pituitary adenoma patients and controls, indicating that none of the individual <it>PTTG1 </it>SNPs examined in this study is associated with the risk of pituitary adenoma. In addition, no significant association was detected between the reconstructed <it>PTTG1 </it>haplotypes and pituitary adenoma cases or the controls.</p> <p>Conclusions</p> <p>Though no significant association was found between <it>PTTG1 </it>haplotypes and the risk of pituitary adenoma, this is the first report on the association of individual <it>PTTG1 </it>SNPs or <it>PTTG1 </it>haplotypes with the risk of pituitary adenoma based on a solid study; it will provide an important reference for future studies on the association between genetic alterations in <it>PTTG1 </it>and the risk of pituitary adenoma or other tumors.</p

    Circular Permutation of Red Fluorescent Proteins

    Get PDF
    Circular permutation of fluorescent proteins provides a substrate for the design of molecular sensors. Here we describe a systematic exploration of permutation sites for mCherry and mKate using a tandem fusion template approach. Circular permutants retaining more than 60% (mCherry) and 90% (mKate) brightness of the parent molecules are reported, as well as a quantitative evaluation of the fluorescence from neighboring mutations. Truncations of circular permutants indicated essential N- and C- terminal segments and substantial flexibility in the use of these molecules. Structural evaluation of two cp-mKate variants indicated no major conformational changes from the previously reported wild-type structure, and cis conformation of the chromophores. Four cp-mKates were identified with over 80% of native fluorescence, providing important new building blocks for sensor and complementation experiments
    corecore