31 research outputs found

    How Psychological Stress Affects Emotional Prosody

    Get PDF
    We explored how experimentally induced psychological stress affects the production and recognition of vocal emotions. In Study 1a, we demonstrate that sentences spoken by stressed speakers are judged by naive listeners as sounding more stressed than sentences uttered by non-stressed speakers. In Study 1b, negative emotions produced by stressed speakers are generally less well recognized than the same emotions produced by non-stressed speakers. Multiple mediation analyses suggest this poorer recognition of negative stimuli was due to a mismatch between the variation of volume voiced by speakers and the range of volume expected by listeners. Together, this suggests that the stress level of the speaker affects judgments made by the receiver. In Study 2, we demonstrate that participants who were induced with a feeling of stress before carrying out an emotional prosody recognition task performed worse than non-stressed participants. Overall, findings suggest detrimental effects of induced stress on interpersonal sensitivity

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    The relative influences of nitrogen and phosphorus on oceanic primary production

    No full text
    A simple model has the potential to resolve the long-running debate amongst oceanographers over whether nitrogen or phosphorus exerts overall control on oceanic primary production. A representation of the competition between nitrogen-fixing and other phytoplankton is inserted into a two-box global model of the oceanic nitrogen and phosphorus cycles. Homeostatic regulation of both nitrate and phosphate concentrations results, with surface waters more deficient in nitrate than phosphate in the steady state, but with external phosphate inputs controlling longer-term primary production in the global ocean

    Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target

    No full text
    Agricultural methane and nitrous oxide emissions represent around 10–12% of total anthropogenic GHG emissions and have a key role to play in achieving a 1.5 °C (above pre-industrial) climate stabilization target. Using a multi-model assessment approach, we quantify the potential contribution of agriculture to the 1.5 °C target and decompose the mitigation potential by emission source, region and mitigation mechanism. The results show that the livestock sector will be vital to achieve emission reductions consistent with the 1.5 °C target mainly through emission-reducing technologies or structural changes. Agriculture may contribute emission reductions of 0.8–1.4 Gt of CO2-equivalent (CO2e) yr−1 at just US$20 per tCO2e in 2050. Combined with dietary changes, emission reductions can be increased to 1.7–1.8 GtCO2e yr−1. At carbon prices compatible with the 1.5 °C target, agriculture could even provide average emission savings of 3.9 GtCO2e yr−1 in 2050, which represents around 8% of current GHG emissions
    corecore