8,657 research outputs found

    Local structure around Ga in ultrafine GaN/ZnO coaxial nanorod heterostructures

    Get PDF
    The structure of tubular GaN coaxially grown on ZnO nanorods with thickness of 6-12 nm was investigated using x-ray absorption fine structure (XAFS) at the Ga K edge. The XAFS measurements revealed that the GaN had a distorted-wurtzite structure, and that there were more distortions in the bond length of Ga-Ga pairs than in Ga-N pairs. However, no extra disorders were observed in any of the pairs. These results strongly suggest that Ga atoms first bonded to the ZnO template. Unlike other techniques, the XAFS determines structure around a selected species atom in nano-heterostructures. (c) 2006 American Institute of Physics.open1188sciescopu

    Orientation-dependent x-ray absorption fine structure of ZnO nanorods

    Get PDF
    The local structure of two samples of vertically well-aligned ZnO nanorods with average diameters of 13 and 37 nm were studied using orientation-dependent x-ray absorption fine structure (XAFS) at the Zn K edge. The aligned ZnO nanorod samples were fabricated on sapphire (0001) substrates with a catalyst-free metalorganic vapor-phase epitaxy method. The XAFS measurements showed that both nanorod samples have a well-ordered wurtzite structure and that no vacancy was observed at either site of zinc or oxygen atoms. However, we found that in both samples the lattice constants of a and b were shrunken by similar to0.04 Angstrom while c was elongated by similar to0.1 Angstrom, compared with those of their bulk counterparts. Furthermore, there was a substantial amount of disorder in the bond length of the only Zn-O pairs located near the ab plane. This may suggest that the terminating atoms at the boundaries of the nanorods are oxygen atoms. (C) 2005 American Institute of Physics.open114545sciescopu

    Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc - Reduced risk of osteophyte formation.

    Get PDF
    Mesenchymal stem cells (MSCs) have the potential to treat early intervertebral disc (IVD) degeneration. However, during intradiscal injection, the vast majority of cells leaked out even in the presence of hydrogel carrier. Recent evidence suggests that annulus puncture is associated with cell leakage and contributes to osteophyte formation, an undesirable side effect. This suggests the significance of developing appropriate carriers for intradiscal delivery of MSCs. We previously developed a collagen microencapsulation platform, which entraps MSCs in a solid microsphere consisting of collagen nanofiber meshwork. These solid yet porous microspheres support MSC attachment, survival, proliferation, migration, differentiation, and matrix remodeling. Here we hypothesize that intradiscal injection of MSCs in collagen microspheres will outperform that of MSCs in saline in terms of better functional outcomes and reduced side effects. Specifically, we induced disc degeneration in rabbits and then intradiscally injected autologous MSCs, either packaged within collagen microspheres or directly suspended in saline, into different disc levels. Functional outcomes including hydration index and disc height were monitored regularly until 6 months. Upon sacrifice, the involved discs were harvested for histological, biochemical, and biomechanical evaluations. MSCs in collagen microspheres showed advantage over MSCs in saline in better maintaining the dynamic mechanical behavior but similar performance in hydration and disc height maintenance and matrix composition. More importantly, upon examination of gross appearance, radiograph, and histology of IVD, delivering MSCs in collagen microspheres significantly reduced the risk of osteophyte formation as compared to that in saline. This work demonstrates the significance of using cell carriers during intradiscal injection of MSCs in treating disc degeneration.published_or_final_versio

    Building up spacetime with quantum entanglement

    Full text link
    In this essay, we argue that the emergence of classically connected spacetimes is intimately related to the quantum entanglement of degrees of freedom in a non-perturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of spacetime results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.Comment: Gravity Research Foundation essay, 7 pages, LaTeX, 5 figure

    Mapping the optimal route between two quantum states

    Get PDF
    A central feature of quantum mechanics is that a measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance to chemical synthesis. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories of a superconducting circuit that evolves in competition between continuous weak measurement and driven unitary evolution. By tracking individual trajectories that evolve between an arbitrary choice of initial and final states we can deduce the most probable path through quantum state space. These pre- and post-selected quantum trajectories also reveal the optimal detector signal in the form of a smooth time-continuous function that connects the desired boundary conditions. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wave function collapse, and unitary evolution of the quantum state as described by the Schrodinger equation. These results and the underlying theory, based on a principle of least action, reveal the optimal route from initial to final states, and may enable new quantum control methods for state steering and information processing.Comment: 12 pages, 9 figure

    Form factors at strong coupling via a Y-system

    Full text link
    We compute form factors in planar N=4 Super Yang-Mills at strong coupling. Namely we consider the overlap between an operator insertion and 2n gluons. Through the gauge/string duality these are given by minimal surfaces in AdS space. The surfaces end on an infinite periodic sequence of null segments at the boundary of AdS. We consider surfaces that can be embedded in AdS_3. We derive set of functional equations for the cross ratios as functions of the spectral parameter. These equations are of the form of a Y-system. The integral form of the Y-system has Thermodynamics Bethe Ansatz form. The area is given by the free energy of the TBA system or critical value of Yang-Yang functional. We consider a restricted set of operators which have small conformal dimension

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    An off-board quantum point contact as a sensitive detector of cantilever motion

    Full text link
    Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes

    Full text link
    Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio
    corecore