1,454 research outputs found

    Cartesian closed 2-categories and permutation equivalence in higher-order rewriting

    Get PDF
    We propose a semantics for permutation equivalence in higher-order rewriting. This semantics takes place in cartesian closed 2-categories, and is proved sound and complete

    Full abstraction for fair testing in CCS (expanded version)

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent form of presheaf semantics and as a concurrent form of game semantics. We define in this setting an analogue of fair testing equivalence, which we prove fully abstract w.r.t. standard fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the `rule of the game'. From any playground, we derive two languages equipped with labelled transition systems, as well as a strong, functional bisimulation between them.Comment: 80 page

    New evidence for Green's conjecture on syzygies of canonical curves

    Get PDF
    We prove that two weakened forms of Green's conjectures for canonical curves are equivalent when the genus gg is odd.Comment: Tex-type: LaTe

    Shapely monads and analytic functors

    Full text link
    In this paper, we give precise mathematical form to the idea of a structure whose data and axioms are faithfully represented by a graphical calculus; some prominent examples are operads, polycategories, properads, and PROPs. Building on the established presentation of such structures as algebras for monads on presheaf categories, we describe a characteristic property of the associated monads---the shapeliness of the title---which says that "any two operations of the same shape agree". An important part of this work is the study of analytic functors between presheaf categories, which are a common generalisation of Joyal's analytic endofunctors on sets and of the parametric right adjoint functors on presheaf categories introduced by Diers and studied by Carboni--Johnstone, Leinster and Weber. Our shapely monads will be found among the analytic endofunctors, and may be characterised as the submonads of a universal analytic monad with "exactly one operation of each shape". In fact, shapeliness also gives a way to define the data and axioms of a structure directly from its graphical calculus, by generating a free shapely monad on the basic operations of the calculus. In this paper we do this for some of the examples listed above; in future work, we intend to do so for graphical calculi such as Milner's bigraphs, Lafont's interaction nets, or Girard's multiplicative proof nets, thereby obtaining canonical notions of denotational model

    Stateless HOL

    Get PDF
    We present a version of the HOL Light system that supports undoing definitions in such a way that this does not compromise the soundness of the logic. In our system the code that keeps track of the constants that have been defined thus far has been moved out of the kernel. This means that the kernel now is purely functional. The changes to the system are small. All existing HOL Light developments can be run by the stateless system with only minor changes. The basic principle behind the system is not to name constants by strings, but by pairs consisting of a string and a definition. This means that the data structures for the terms are all merged into one big graph. OCaml - the implementation language of the system - can use pointer equality to establish equality of data structures fast. This allows the system to run at acceptable speeds. Our system runs at about 85% of the speed of the stateful version of HOL Light.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Graphical Presentations of Symmetric Monoidal Closed Theories

    Get PDF
    We define a notion of symmetric monoidal closed (SMC) theory, consisting of a SMC signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.Comment: Uses Paul Taylor's diagram
    • …
    corecore