1,734 research outputs found

    Pulsed neutron time-dependent intensity modulation for quasi-elastic neutron scattering spectroscopy

    Get PDF
    We propose a basic formula and demonstration for a high-resolution quasi-elastic neutron scattering (QENS) by combining the time-of-flight (TOF) method with Modulation of Intensity by Zero Effort (MIEZE) type neutron spin echo spectroscopy. The MIEZE technique has the potential to develop a unique approach to study on slow dynamics of condensed matter; however, the energy resolution is limited owing to the hypersensitivity of the MIEZE signal contrast to the echo condition, which is strongly affected by the alignment of the instruments and the sample. The narrow allowance of the optimal alignment is a major obstacle to the wide use of this technique. Combining the TOF method with MIEZE (TOF-MIEZE), the hypersensitivity of MIEZE signals is significantly alleviated with a short pulsed beam. This robustness is very useful to optimize experimental alignments and enables accurate measurements of QENS. The experimental results demonstrate the characteristic of the TOF-MIEZE technique and are well described by the formula presented in this study

    Towards a high-resolution TOF-MIEZE spectrometer with very cold neutrons

    Get PDF
    We report the first experimental test of TOF-MIEZE technique using very cold neutrons (VCNs) towards high-resolution quasi-elastic neutron scattering spectroscopy. TOF-MIEZE is a type of neutron resonance spin echo spectroscopy with a combination of the time-of-flight (TOF) method and modulation of intensity by zero effort (MIEZE). A compact MIEZE instrument was constructed at the VCN beam port at the High Flux Reactor at the Institut Laue Langevin. By accumulating individual oscillations of raw data, we observed a TOF-MIEZE signal with an effective frequency of 50 kHz in a wavelength band of 4–6 nm. The signal contrasts were 0.59 ± 0.04 and 0.29 ± 0.03 for wavelengths of 4 nm and 6 nm, respectively. The Fourier time was estimated to be 70 ns with 6 nm VCNs in the experimental set-up

    Semi-inclusive vector meson production in DIS

    Get PDF
    We analyze one-particle inclusive DIS in the case when a spin-1 hadron (such as a vector meson) is observed in the final state. We consider only leading order contributions in 1/Q, but we include transverse momentum of partons. Several new fragmentation functions appear in cross sections. One of them can be measured in connection with the transverse-spin disbtribution function h_1.Comment: 3 pages, uses sprocl.sty, talk given at the DIS2000 conference, Liverpool, England, April 2000, to appear in the conference proceeding

    Polarized light-flavor antiquarks from Drell-Yan processes of h+\vec{N}\to\vec{l^{+-}} + l^{-+} + X

    Full text link
    We propose a formula to determine the first moment of difference between the polarized uˉ\bar u- and dˉ\bar d-quarks in the nucleon, {\it i.e.} Δuˉ−Δdˉ\Delta\bar u-\Delta \bar d from the Drell-Yan processes in collisions of unpolarized hadrons with longitudinally polarized nucleons by measuring outgoing lepton helicities. As coefficients in the differential cross section depend on the uu- and dd-quark numbers in the unpolarized hadron beam, the difference Δuˉ−Δdˉ\Delta\bar u-\Delta\bar d can be independently tested by changing the hadron beam. Moreover, a formula for estimating the KK-factor in Drell-Yan processes is also suggested.Comment: 10 pages, 1 figur

    On the bicoherence analysis of plasma turbulence

    Get PDF
    The bicoherence of fluctuations in a system of drift waves and zonal flows is discussed. In strong drift-wave turbulence, where broadband fluctuations are excited, the bicoherence is examined. A Langevin equation formalism of turbulent interactions allows us to relate the bicoherence coefficient to the projection of nonlinear force onto the test mode. The dependence of the summed bicoherence on the amplitude of zonal flows is clarified. The importance of observing biphase is also stressed. The results provide a basis for measurement of nonlinear interaction in a system of drift waves and zonal flow
    • 

    corecore