3,656 research outputs found
Local Public Services in Wisconsin: Alternatives for Municipalities with a Focus on Privatization
Both rural and urban municipal officials, faced with increased local resistance to higher taxes, increasing expenditure needs, weakening financial support from higher levels of government, and the growing pressure to "do more with less" have accelerated their search for alternative ways of delivering local public services. The downsizing of government has been brought to the forefront of public discussion in part due to the general conservative shift at the federal and state level and the need to maintain a balanced budget at the local level. Related private sector trends downsizing middle management as a means to become "leaner and meaner," reducing duplication and waste, and increasing earnings, profit levels, and returns to investors. At the same time many local public officials are faced with rising costs to maintain an aging infrastructure, accommodating the needs of special populations, satisfying rules and regulations imposed by higher levels of government, funding new investments to meet the demands of a growing economy in some instances, or maintaining critical services in the face declining economies. In short, the rules of the game for effective management of local governments have changed.
Progress in atom chips and the integration of optical microcavities
We review recent progress at the Centre for Cold Matter in developing atom
chips. An important advantage of miniaturizing atom traps on a chip is the
possibility of obtaining very tight trapping structures with the capability of
manipulating atoms on the micron length scale. We recall some of the pros and
cons of bringing atoms close to the chip surface, as is required in order to
make small static structures, and we discuss the relative merits of metallic,
dielectric and superconducting chip surfaces. We point out that the addition of
integrated optical devices on the chip can enhance its capability through
single atom detection and controlled photon production. Finally, we review the
status of integrated microcavities that have recently been demonstrated at our
Centre and discuss their prospects for future development.Comment: 12 pages, 6 figures, proceedings of the ICOLS07 conferenc
ICP polishing of silicon for high quality optical resonators on a chip
Miniature concave hollows, made by wet etching silicon through a circular
mask, can be used as mirror substrates for building optical micro-cavities on a
chip. In this paper we investigate how ICP polishing improves both shape and
roughness of the mirror substrates. We characterise the evolution of the
surfaces during the ICP polishing using white-light optical profilometry and
atomic force microscopy. A surface roughness of 1 nm is reached, which reduces
to 0.5 nm after coating with a high reflectivity dielectric. With such smooth
mirrors, the optical cavity finesse is now limited by the shape of the
underlying mirror
Variation in _PNPLA3_ is associated with outcomes in alcoholic liver disease
Two recent genome-wide association studies have described associations of SNP variants in _PNPLA3_ with nonalcoholic fatty liver and plasma liver enzyme levels in population based cohorts. We investigated the contributions of these variants to clinical outcomes in Mestizo subjects with a history of excessive alcohol consumption. We show that non-synonymous variant rs738409[G] (I148M) in _PNPLA3_ is strongly associated with alcoholic liver disease and progression to alcoholic cirrhosis (unadjusted OR = 2.25, P = 1.7x10^-10^; ancestry-adjusted OR = 1.79, P = 1.9x10^-5^)
Observing Coherence Effects in an Overdamped Quantum System
It is usually considered that the spectrum of an optical cavity coupled to an
atomic medium does not exhibit a normal-mode splitting unless the system
satisfies the strong coupling condition, meaning the Rabi frequency of the
coherent coupling exceeds the decay rates of atom and cavity excitations. Here
we show that this need not be the case, but depends on the way in which the
coupled system is probed. Measurements of the reflection of a probe laser from
the input mirror of an overdamped cavity reveal an avoided crossing in the
spectrum which is not observed when driving the atoms directly and measuring
the Purcell-enhanced cavity emission. We understand these observations by
noting a formal correspondence with electromagnetically-induced transparency of
a three-level atom in free space, where our cavity acts as the absorbing medium
and the coupled atoms play the role of the control field
Atom detection and photon production in a scalable, open, optical microcavity
A microfabricated Fabry-Perot optical resonator has been used for atom
detection and photon production with less than 1 atom on average in the cavity
mode. Our cavity design combines the intrinsic scalability of microfabrication
processes with direct coupling of the cavity field to single-mode optical
waveguides or fibers. The presence of the atom is seen through changes in both
the intensity and the noise characteristics of probe light reflected from the
cavity input mirror. An excitation laser passing transversely through the
cavity triggers photon emission into the cavity mode and hence into the
single-mode fiber. These are first steps towards building an optical
microcavity network on an atom chip for applications in quantum information
processing.Comment: 4 pages, 4 figures. A typographical error in the published paper has
been corrected (equation of the corrected normalized variance, page 3, 2nd
paragraph
Atom chip for BEC interferometry
We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a BoseβEinstein condensate with good phase stability
The effect of self-affine fractal roughness of wires on atom chips
Atom chips use current flowing in lithographically patterned wires to produce
microscopic magnetic traps for atoms. The density distribution of a trapped
cold atom cloud reveals disorder in the trapping potential, which results from
meandering current flow in the wire. Roughness in the edges of the wire is
usually the main cause of this behaviour. Here, we point out that the edges of
microfabricated wires normally exhibit self-affine roughness. We investigate
the consequences of this for disorder in atom traps. In particular, we consider
how closely the trap can approach the wire when there is a maximum allowable
strength of the disorder. We comment on the role of roughness in future
atom--surface interaction experiments.Comment: 7 pages, 7 figure
Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences
We show that the commonly known conductor boundary conditions
can be realized in two ways which we call 'thick' and 'thin'
conductor. The 'thick' conductor is the commonly known approach and includes a
Neumann condition on the normal component of the electric field
whereas for a 'thin' conductor remains without boundary condition.
Both types describe different physics already on the classical level where a
'thin' conductor allows for an interaction between the normal components of
currents on both sides. On quantum level different forces between a conductor
and a single electron or a neutral atom result. For instance, the
Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a
'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints
correcte
Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light
We present a technique for atomic density measurements by the off-resonant
phase-shift induced on a two-frequency, coherently-synthesised light beam. We
have used this scheme to measure the column density of a magnetically trapped
atom cloud and to monitor oscillations of the cloud in real time by making over
a hundred non-destructive local density measurments. For measurements using
pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is
limited by statistics of the photons and the photodiode avalanche. We explore
the relationship between measurement precision and the unwanted loss of atoms
from the trap and introduce a figure of merit that characterises it. This
method can be used to probe the density of a BEC with minimal disturbance of
its phase.Comment: Submitted to New Journal of Physic
- β¦