3,656 research outputs found

    Local Public Services in Wisconsin: Alternatives for Municipalities with a Focus on Privatization

    Get PDF
    Both rural and urban municipal officials, faced with increased local resistance to higher taxes, increasing expenditure needs, weakening financial support from higher levels of government, and the growing pressure to "do more with less" have accelerated their search for alternative ways of delivering local public services. The downsizing of government has been brought to the forefront of public discussion in part due to the general conservative shift at the federal and state level and the need to maintain a balanced budget at the local level. Related private sector trends downsizing middle management as a means to become "leaner and meaner," reducing duplication and waste, and increasing earnings, profit levels, and returns to investors. At the same time many local public officials are faced with rising costs to maintain an aging infrastructure, accommodating the needs of special populations, satisfying rules and regulations imposed by higher levels of government, funding new investments to meet the demands of a growing economy in some instances, or maintaining critical services in the face declining economies. In short, the rules of the game for effective management of local governments have changed.

    Progress in atom chips and the integration of optical microcavities

    Full text link
    We review recent progress at the Centre for Cold Matter in developing atom chips. An important advantage of miniaturizing atom traps on a chip is the possibility of obtaining very tight trapping structures with the capability of manipulating atoms on the micron length scale. We recall some of the pros and cons of bringing atoms close to the chip surface, as is required in order to make small static structures, and we discuss the relative merits of metallic, dielectric and superconducting chip surfaces. We point out that the addition of integrated optical devices on the chip can enhance its capability through single atom detection and controlled photon production. Finally, we review the status of integrated microcavities that have recently been demonstrated at our Centre and discuss their prospects for future development.Comment: 12 pages, 6 figures, proceedings of the ICOLS07 conferenc

    ICP polishing of silicon for high quality optical resonators on a chip

    Full text link
    Miniature concave hollows, made by wet etching silicon through a circular mask, can be used as mirror substrates for building optical micro-cavities on a chip. In this paper we investigate how ICP polishing improves both shape and roughness of the mirror substrates. We characterise the evolution of the surfaces during the ICP polishing using white-light optical profilometry and atomic force microscopy. A surface roughness of 1 nm is reached, which reduces to 0.5 nm after coating with a high reflectivity dielectric. With such smooth mirrors, the optical cavity finesse is now limited by the shape of the underlying mirror

    Variation in _PNPLA3_ is associated with outcomes in alcoholic liver disease

    Get PDF
    Two recent genome-wide association studies have described associations of SNP variants in _PNPLA3_ with nonalcoholic fatty liver and plasma liver enzyme levels in population based cohorts. We investigated the contributions of these variants to clinical outcomes in Mestizo subjects with a history of excessive alcohol consumption. We show that non-synonymous variant rs738409[G] (I148M) in _PNPLA3_ is strongly associated with alcoholic liver disease and progression to alcoholic cirrhosis (unadjusted OR = 2.25, P = 1.7x10^-10^; ancestry-adjusted OR = 1.79, P = 1.9x10^-5^)

    Observing Coherence Effects in an Overdamped Quantum System

    Get PDF
    It is usually considered that the spectrum of an optical cavity coupled to an atomic medium does not exhibit a normal-mode splitting unless the system satisfies the strong coupling condition, meaning the Rabi frequency of the coherent coupling exceeds the decay rates of atom and cavity excitations. Here we show that this need not be the case, but depends on the way in which the coupled system is probed. Measurements of the reflection of a probe laser from the input mirror of an overdamped cavity reveal an avoided crossing in the spectrum which is not observed when driving the atoms directly and measuring the Purcell-enhanced cavity emission. We understand these observations by noting a formal correspondence with electromagnetically-induced transparency of a three-level atom in free space, where our cavity acts as the absorbing medium and the coupled atoms play the role of the control field

    Atom detection and photon production in a scalable, open, optical microcavity

    Full text link
    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps towards building an optical microcavity network on an atom chip for applications in quantum information processing.Comment: 4 pages, 4 figures. A typographical error in the published paper has been corrected (equation of the corrected normalized variance, page 3, 2nd paragraph

    Atom chip for BEC interferometry

    Get PDF
    We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a Bose–Einstein condensate with good phase stability

    The effect of self-affine fractal roughness of wires on atom chips

    Get PDF
    Atom chips use current flowing in lithographically patterned wires to produce microscopic magnetic traps for atoms. The density distribution of a trapped cold atom cloud reveals disorder in the trapping potential, which results from meandering current flow in the wire. Roughness in the edges of the wire is usually the main cause of this behaviour. Here, we point out that the edges of microfabricated wires normally exhibit self-affine roughness. We investigate the consequences of this for disorder in atom traps. In particular, we consider how closely the trap can approach the wire when there is a maximum allowable strength of the disorder. We comment on the role of roughness in future atom--surface interaction experiments.Comment: 7 pages, 7 figure

    Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences

    Full text link
    We show that the commonly known conductor boundary conditions E∣∣=BβŠ₯=0E_{||}=B_\perp=0 can be realized in two ways which we call 'thick' and 'thin' conductor. The 'thick' conductor is the commonly known approach and includes a Neumann condition on the normal component EβŠ₯E_\perp of the electric field whereas for a 'thin' conductor EβŠ₯E_\perp remains without boundary condition. Both types describe different physics already on the classical level where a 'thin' conductor allows for an interaction between the normal components of currents on both sides. On quantum level different forces between a conductor and a single electron or a neutral atom result. For instance, the Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a 'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints correcte

    Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light

    Full text link
    We present a technique for atomic density measurements by the off-resonant phase-shift induced on a two-frequency, coherently-synthesised light beam. We have used this scheme to measure the column density of a magnetically trapped atom cloud and to monitor oscillations of the cloud in real time by making over a hundred non-destructive local density measurments. For measurements using pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is limited by statistics of the photons and the photodiode avalanche. We explore the relationship between measurement precision and the unwanted loss of atoms from the trap and introduce a figure of merit that characterises it. This method can be used to probe the density of a BEC with minimal disturbance of its phase.Comment: Submitted to New Journal of Physic
    • …
    corecore