53 research outputs found

    Metaheuristics for solving a multimodal home-healthcare scheduling problem

    Get PDF
    Abstract We present a general framework for solving a real-world multimodal home-healthcare scheduling (MHS) problem from a major Austrian home-healthcare provider. The goal of MHS is to assign home-care staff to customers and determine efficient multimodal tours while considering staff and customer satisfaction. Our approach is designed to be as problem-independent as possible, such that the resulting methods can be easily adapted to MHS setups of other home-healthcare providers. We chose a two-stage approach: in the first stage, we generate initial solutions either via constraint programming techniques or by a random procedure. During the second stage, the initial solutions are (iteratively) improved by applying one of four metaheuristics: variable neighborhood search, a memetic algorithm, scatter search and a simulated annealing hyper-heuristic. An extensive computational comparison shows that the approach is capable of solving real-world instances in reasonable time and produces valid solutions within only a few seconds

    An investigation of heuristic decomposition to tackle workforce scheduling and routing with time-dependent activities constraints

    Get PDF
    This paper presents an investigation into the application of heuristic decomposition and mixed-integer programming to tackle workforce scheduling and routing problems (WSRP) that involve timedependent activities constraints. These constraints refer to time-wise dependencies between activities. The decomposition method investigated here is called repeated decomposition with con ict repair (RDCR) and it consists of repeatedly applying a phase of problem decomposition and sub-problem solving, followed by a phase dedicated to con ict repair. In order to deal with the time-dependent activities constraints, the problem decomposition puts all activities associated to the same location and their dependent activities in the same sub-problem. This is to guarantee the satisfaction of time-dependent activities constraints as each sub-problem is solved exactly with an exact solver. Once the assignments are made, the time windows of dependent activities are fixed even if those activities are subject to the repair phase. The paper presents an experimental study to assess the performance of the decomposition method when compared to a tailored greedy heuristic. Results show that the proposed RDCR is an effective approach to harness the power of mixed integer programming solvers to tackle the diffcult and highly constrained WSRP in practical computational time. Also, an analysis is conducted in order to understand how the performance of the different solution methods (the decomposition, the tailored heuristic and the MIP solver) is accected by the size of the problem instances and other features of the problem. The paper concludes by making some recommendations on the type of method that could be more suitable for different problem sizes

    Phenolic Compounds from Limonium pruinosum

    No full text
    corecore