31 research outputs found

    Prevalence of Coxiella burnetii in clinically healthy German sheep flocks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current epidemiological data on the situation of <it>Coxiella (C.) burnetii </it>infections in sheep are missing, making risk assessment and the implementation of counteractive measures difficult. Using the German state of Thuringia as a model example, the estimated sero-, and antigen prevalence of <it>C. burnetii </it>(10% and 25%, respectively) was assessed at flock level in 39/252 randomly selected clinically healthy sheep flocks with more than 100 ewes and unknown abortion rate.</p> <p>Results</p> <p>The CHECKIT™ Q-fever Test Kit identified 11 (28%) antibody positive herds, whereas real-time PCR revealed the presence of <it>C. burnetii </it>DNA in 2 (5%) of the flocks. Multiple-locus variable number of tandem repeats analysis of 9 isolates obtained from one flock revealed identical profiles. All isolates contained the plasmid QpH1.</p> <p>Conclusions</p> <p>The results demonstrate that <it>C. burnetii </it>is present in clinically inconspicuous sheep flocks and sporadic flare-ups do occur as the notifications to the German animal disease reporting system show. Although <it>C. burnetii </it>infections are not a primary veterinary concern due to the lack of significant clinical impact on animal health (with the exception of goats), the eminent zoonotic risk for humans should not be underestimated. Therefore, strategies combining the interests of public and veterinary public health should include monitoring of flocks, the identification and culling of shedders as well as the administration of protective vaccines.</p

    Community-acquired pneumonia related to intracellular pathogens

    Get PDF
    Community-acquired pneumonia (CAP) is associated with high rates of morbidity and mortality worldwide; the annual incidence of CAP among adults in Europe has ranged from 1.5 to 1.7 per 1000 population. Intracellular bacteria are common causes of CAP. However, there is considerable variation in the reported incidence between countries and change over time. The intracellular pathogens that are well established as causes of pneumonia are Legionella pneumophila, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Chlamydophila psittaci, and Coxiella burnetii. Since it is known that antibiotic treatment for severe CAP is empiric and includes coverage of typical and atypical pathogens, microbiological diagnosis bears an important relationship to prognosis of pneumonia. Factors such as adequacy of initial antibiotic or early de-escalation of therapy are important variables associated with outcomes, especially in severe cases. Intracellular pathogens sometimes appear to cause more severe disease with respiratory failure and multisystem dysfunction associated with fatal outcomes. The clinical relevance of intracellular pathogens in severe CAP has not been specifically investigated. We review the prevalence, general characteristics, and outcomes of severe CAP cases caused by intracellular pathogens
    corecore