63 research outputs found

    A Rice Gene of De Novo Origin Negatively Regulates Pathogen-Induced Defense Response

    Get PDF
    How defense genes originated with the evolution of their specific pathogen-responsive traits remains an important problem. It is generally known that a form of duplication can generate new genes, suggesting that a new gene usually evolves from an ancestral gene. However, we show that a new defense gene in plants may evolve by de novo origination, resulting in sophisticated disease-resistant functions in rice. Analyses of gene evolution showed that this new gene, OsDR10, had homologs only in the closest relative, Leersia genus, but not other subfamilies of the grass family; therefore, it is a rice tribe-specific gene that may have originated de novo in the tribe. We further show that this gene may evolve a highly conservative rice-specific function that contributes to the regulation difference between rice and other plant species in response to pathogen infections. Biologic analyses including gene silencing, pathologic analysis, and mutant characterization by transformation showed that the OsDR10-suppressed plants enhanced resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae strains, which cause bacterial blight disease. This enhanced disease resistance was accompanied by increased accumulation of endogenous salicylic acid (SA) and suppressed accumulation of endogenous jasmonic acid (JA) as well as modified expression of a subset of defense-responsive genes functioning both upstream and downstream of SA and JA. These data and analyses provide fresh insights into the new biologic and evolutionary processes of a de novo gene recruited rapidly

    Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses

    Get PDF
    To test whether natural variation in Arabidopsis could be used to dissect out the genetic basis of responses to drought stress, we characterised a number of accessions. Most of the accessions belong to a core collection that was shown to maximise the genetic diversity captured for a given number of individual accessions in Arabidopsis thaliana. We measured total leaf area (TLA), Electrolyte Leakage (EL), Relative Water Content (RWC), and Cut Rosette Water Loss (CRWL) in control and mild water deficit conditions. A Principal Component Analysis revealed which traits explain most of the variation and showed that some accessions behave differently compared to the others in drought conditions, these included Ita-0, Cvi-0 and Shahdara. This study relied on genetic variation found naturally within the species, in which populations are assumed to be adapted to their environment. Overall, Arabidopsis thaliana showed interesting phenotypic variations in response to mild water deficit that can be exploited to identify genes and alleles important for this complex trait

    A group randomized trial of a complexity-based organizational intervention to improve risk factors for diabetes complications in primary care settings: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most patients with type 2 diabetes have suboptimal control of their glucose, blood pressure (BP), and lipids – three risk factors for diabetes complications. Although the chronic care model (CCM) provides a roadmap for improving these outcomes, developing theoretically sound implementation strategies that will work across diverse primary care settings has been challenging. One explanation for this difficulty may be that most strategies do not account for the complex adaptive system (CAS) characteristics of the primary care setting. A CAS is comprised of individuals who can learn, interconnect, self-organize, and interact with their environment in a way that demonstrates non-linear dynamic behavior. One implementation strategy that may be used to leverage these properties is practice facilitation (PF). PF creates time for learning and reflection by members of the team in each clinic, improves their communication, and promotes an individualized approach to implement a strategy to improve patient outcomes.</p> <p>Specific objectives</p> <p>The specific objectives of this protocol are to: evaluate the effectiveness and sustainability of PF to improve risk factor control in patients with type 2 diabetes across a variety of primary care settings; assess the implementation of the CCM in response to the intervention; examine the relationship between communication within the practice team and the implementation of the CCM; and determine the cost of the intervention both from the perspective of the organization conducting the PF intervention and from the perspective of the primary care practice.</p> <p>Intervention</p> <p>The study will be a group randomized trial conducted in 40 primary care clinics. Data will be collected on all clinics, with 60 patients in each clinic, using a multi-method assessment process at baseline, 12, and 24 months. The intervention, PF, will consist of a series of practice improvement team meetings led by trained facilitators over 12 months. Primary hypotheses will be tested with 12-month outcome data. Sustainability of the intervention will be tested using 24 month data. Insights gained will be included in a delayed intervention conducted in control practices and evaluated in a pre-post design.</p> <p>Primary and secondary outcomes</p> <p>To test hypotheses, the unit of randomization will be the clinic. The unit of analysis will be the repeated measure of each risk factor for each patient, nested within the clinic. The repeated measure of glycosylated hemoglobin A1c will be the primary outcome, with BP and Low Density Lipoprotein (LDL) cholesterol as secondary outcomes. To study change in risk factor level, a hierarchical or random effect model will be used to account for the nesting of repeated measurement of risk factor within patients and patients within clinics.</p> <p>This protocol follows the CONSORT guidelines and is registered per ICMJE guidelines:</p> <p>Clinical Trial Registration Number</p> <p>NCT00482768</p

    Proteins with Complex Architecture as Potential Targets for Drug Design: A Case Study of Mycobacterium tuberculosis

    Get PDF
    Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only

    Digital technology enablers for resilient and customer driven food value chains

    Get PDF
    Food production chains have to respond to disrupted global markets and dynamic customer demands. They are coming under pressure to move from a supply to a demand-driven business model. The inherent difficulties in the lifecycle management of food products, their perishable nature, the volatility in global and regional supplier and customer markets, and the mix of objective and subjective drivers of customer demand and satisfaction, compose a challenging food production landscape. Businesses need to navigate through dynamically evolving operational risks and ensure targeted performance in terms of supply chain resilience and agility, as well as transparency and product assurance. While the industrial transition to digitalised and automated food production chains is seen as a response to such challenges, the contribution of industry 4.0 technology enablers towards this aim is not sufficiently well understood. This paper outlines the key features of high performing food production chains and performs a mapping between them and enabling technologies. As digitalisation initiatives gain priority, such mapping can help with the prioritisation of technology enablers on delivering key aspects of high performing food production chains

    Root Cause Analysis of a Printed Circuit Board (PCB) Failure in a Public Transport Communication System

    No full text
    A printed circuit board (PCB) is an essential element for practical circuit applications and its failure can inflict large financial costs and even safety concerns, especially if the PCB failure occurs prematurely and unexpectedly. Understanding the failure modes and even the failure mechanisms of a PCB failure are not sufficient to ensure the same failure will not occur again in subsequent operations with different batches of PCBs. The identification of the root cause is crucial to prevent the reoccurrence of the same failure. In this work, a step-by-step approach from customer returned and inventory reproduced boards to the root cause identification is described for an actual industry case where the failure is a PCB burn-out. The failure mechanism is found to be a conductive anodic filament (CAF) even though the PCB is CAF-resistant. The root cause is due to PCB de-penalization. A reliability verification to assure the effectiveness of the corrective action according to the identified root cause is shown to complete the case study. This work shows that a CAF-resistant PCB does not necessarily guarantee no CAF and PCB processes can render its CAF resistance ineffective

    The Effects of Anti-Dementia and Nootropic Treatments on the Mortality of Patients with Dementia: A Population-Based Cohort Study in Taiwan.

    No full text
    Few studies have examined the contribution of treatment on the mortality of dementia based on a population-based study.To investigate the effects of anti-dementia and nootropic treatments on the mortality of dementia using a population-based cohort study.12,193 incident dementia patients were found from 2000 to 2010. Their data were compared with 12,193 age- and sex-matched non-dementia controls that were randomly selected from the same database. Dementia was classified into vascular (VaD) and degenerative dementia. Mortality incidence and hazard ratios (HRs) were calculated.The median survival time was 3.39 years (95% confidence interval [CI]: 2.88-3.79) for VaD without medication, 6.62 years (95% CI: 6.24-7.21) for VaD with nootropics, 3.01 years (95% CI: 2.85-3.21) for degenerative dementia without medication, 8.11 years (95% CI: 6.30-8.55) for degenerative dementia with anti-dementia medication, 6.00 years (95% CI: 5.73-6.17) for degenerative dementia with nootropics, and 9.03 years (95% CI: 8.02-9.87) for degenerative dementia with both anti-dementia and nootropic medications. Compared to the non-dementia group, the HRs among individuals with degenerative dementia were 2.69 (95% CI: 2.55-2.83) without medication, 1.46 (95% CI: 1.39-1.54) with nootropics, 1.05 (95% CI: 0.82-1.34) with anti-dementia medication, and 0.92 (95% CI: 0.80-1.05) with both nootropic and anti-dementia medications. VaD with nootropics had a lower mortality (HR: 1.25, 95% CI: 1.15-1.37) than VaD without medication (HR: 2.46, 95% CI: 2.22-2.72).Pharmacological treatments have beneficial effects for patients with dementia in prolonging their survival

    Kaplan-Meier survival estimates.

    No full text
    <p>The median survival times were 9.23 years for the non-dementia group, 3.01 years for degenerative dementia without medications, 8.11 years for degenerative dementia with anti-dementia medications, 6.00 years for degenerative dementia with nootropics, and 9.03 years for degenerative dementia with both nootropic and anti-dementia medications.</p

    Crude mortality incidence rate ratio among the vascular dementia and non-vascular dementia groups.

    No full text
    <p>SD: standard deviation; IQR: interquartile range; py: person-year; IRR: incidence rate ratio; CI: confidence interval</p><p>Crude mortality incidence rate ratio among the vascular dementia and non-vascular dementia groups.</p
    • …
    corecore