36 research outputs found
Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing
We study the Parallel Task Scheduling problem with a
constant number of machines. This problem is known to be strongly NP-complete
for each , while it is solvable in pseudo-polynomial time for each . We give a positive answer to the long-standing open question whether
this problem is strongly -complete for . As a second result, we
improve the lower bound of for approximating pseudo-polynomial
Strip Packing to . Since the best known approximation algorithm
for this problem has a ratio of , this result
narrows the gap between approximation ratio and inapproximability result by a
significant step. Both results are proven by a reduction from the strongly
-complete problem 3-Partition
Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events
Peer reviewedPublisher PD
Therapeutic antibodies elicited by immunization against TNF-alpha.
Tumor necrosis factor-alpha (TNF-alpha) is critically involved in the pathogenesis of several chronic inflammatory diseases. Monoclonal antibodies against TNF-alpha are currently used for the treatment of rheumatoid arthritis and Crohn's disease. This report describes a simple and effective method for active immunization against self TNF-alpha. This vaccination approach leads to a T-cell-dependent polyclonal and sustainable anti-TNF-alpha autoantibody response that declines upon discontinuation of booster injections. The autoantibodies are elicited by injecting modified recombinant TNF-alpha molecules containing foreign immunodominant T-helper epitopes. In mice immunized with such molecules, the symptoms of experimental cachexia and type II collagen-induced arthritis are ameliorated. These results suggest that vaccination against TNF-alpha may be a useful approach for the treatment of rheumatoid arthritis and other chronic inflammatory diseases
Therapeutic antibodies elicited by immunization against TNF-alpha.
Tumor necrosis factor-alpha (TNF-alpha) is critically involved in the pathogenesis of several chronic inflammatory diseases. Monoclonal antibodies against TNF-alpha are currently used for the treatment of rheumatoid arthritis and Crohn's disease. This report describes a simple and effective method for active immunization against self TNF-alpha. This vaccination approach leads to a T-cell-dependent polyclonal and sustainable anti-TNF-alpha autoantibody response that declines upon discontinuation of booster injections. The autoantibodies are elicited by injecting modified recombinant TNF-alpha molecules containing foreign immunodominant T-helper epitopes. In mice immunized with such molecules, the symptoms of experimental cachexia and type II collagen-induced arthritis are ameliorated. These results suggest that vaccination against TNF-alpha may be a useful approach for the treatment of rheumatoid arthritis and other chronic inflammatory diseases