11 research outputs found

    The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

    Get PDF
    In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants . The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics

    Discrete dislocation plasticity and crack tip fields in single crystals

    Get PDF
    Small-scale yielding around a stationary plane strain mode I crack is analyzed using discrete dislocation plasticity. The dislocations are all of edge character, and are modeled as line singularities in a linear elastic material. Superposition is used to represent the solution in terms of analytical fields for edge dislocations in a half-space and a numerical image solution that enforces the boundary conditions. The description of the dislocation dynamics includes the lattice resistance to dislocation motion, dislocation nucleation, interaction with obstacles and annihilation. A model planar crystal with three slip systems is considered. Two slip system orientations are analyzed that differ by a 90° rotation. The non-hardening, single crystal plasticity continuum slip solution for this model crystal predicts that slip and kink bands emerge for both crystal geometries, while later kink band free solutions have been obtained. For a reference set of parameter values, kink band free solutions are found in one orientation while the emergence of kink bands is seen in the other orientation. However, lowering the dislocation source density suppresses the formation of kink bands in this orientation as well. In all calculations, the opening stress in the immediate vicinity of the crack tip is much larger than predicted by continuum slip theory.

    A discrete dislocation analysis of fatigue crack growth

    No full text
    Cyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a non-singular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An irreversible relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions; however below a certain threshold value of ΔKI no crack growth was seen
    corecore