30 research outputs found

    Culture-independent molecular analysis of bacterial diversity in uranium-ore/-mine waste-contaminated and non-contaminated sites from uranium mines

    Get PDF
    Soil, water and sediment samples collected from in and around Jaduguda, Bagjata and Turamdih mines were analyzed for physicochemical parameters and cultured, and yet to be cultured microbial diversity. Culturable fraction of microbial community measured as Colony Forming Unit (CFU) on R2A medium revealed microbes between 104 and 109 CFU/g sample. Community DNA was extracted from all the samples; 16S rRNA gene amplified, cloned and subject to Amplified Ribosomal DNA Restriction Analysis. Clones representing each OTU were selected and sequenced. Sequence analyses revealed that non-contaminated samples were mostly represented by Acidobacteria, Bacteroidetes, Firmicutes and Proteobacteria (β-, γ-, and/or δ-subdivisions) along with less frequent phyla Nitrospira, Deferribacteres, Chloroflexi. In contrast, samples obtained from highly contaminated samples showed distinct abundance of β-,γ- and α-Proteobacteria along with Acidobacteria,Bacteroidetes and members of Firmicutes, Chloroflexi, Candidate division, Planctomycete, Cyanobacteria and Actinobacteria as minor groups. Our data represented the baseline information on bacterial community composition within non-contaminated samples which could potentially be useful for assessing the impact of metal and radionuclides contamination due to uranium mine activities

    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems

    Get PDF
    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems / E. Trushliakov, A. Radchenko, M. Radchenko, S. Kantor, O. Zielikov // Proceedings of the 3rd Intern. Conf. on Design, Simulation, Manufacturing: The Innovation Exchange «Advances in Design, Simulation and Manufacturing III». – Kharkiv, 2020. – Vol. 244. – P. 343–353.Abstract. The operation of the ambient air conditioning systems (ACS) is characterized by considerable fluctuations of the heat load in response to the current climatic conditions. It needs the analyses of the efficiency of the application of compressors with frequency converters for refrigeration capacity regulation in actual climatic conditions. A new method and approach to analyzing the effectiveness of ACS cooling capacity adjusting by using the compressor with changing the rotational speed of the motor as an example have been developed, according to which the overall range of changeable heat loads is divided into two zones: the zone of ambient air processing with considerable fluctuations of the current heat load, that requires effective refrigeration capacity regulation by the compressor with frequency converters (from 100% rated refrigeration capacity down to about 50%) and not an adjustable zone of reduced refrigeration capacity below 50% rated refrigeration capacity of the compressor. The magnitudes of threshold refrigeration capacity between both zones are chosen according to the rational value of installed (design) refrigeration capacity on the ACS, required for cooling the ambient air to a target temperature that ensures the maximum annual refrigeration capacity production in actual current climatic conditions. The proposed method and approach to the analysis of the efficiency of the refrigeration capacity regulation of the ACS compressor by distributing the overall range of changes in current heat loads allows increasing the efficiency of utilizing the installed refrigeration capacity in prevailing climatic conditions

    An Innovative Air Conditioning System for Changeable Heat Loads

    Get PDF
    An Innovative Air Conditioning System for Changeable Heat Loads / E. Trushliakov, M. Radchenko, T. Bohdal, R. Radchenko, S. Kantor // Lecture notes in mechanical engineering. – 2020. – P. 616–625.Abstract. The efficiency of air conditioning (AC) systems depends on the operation of their air coolers at varying heat loads in response to current changeable climatic conditions. In general case, an overall heat load of any AC system comprises the unstable range, corresponding to ambient air processing with heat load fluctuations, and a comparatively stable part for subsequent air subcooling. Following from this approach, a rational design overall heat load is chosen to provide a maximum annular refrigeration capacity generation and divided into a comparatively stable basic part and a remaining part for ambient air precooling at changeable heat loads. The ambient air precooling mode with considerable heat load fluctuation needs load modulation, whereas the comparatively stable heat load range can be covered by operation at about nominal mode. According to modern trend in AC systems the load modulation is performed by varying refrigerant feed to air coolers in Variable Refrigerant Flow (VRF) system. But with this the problem of inefficient operation of air coolers caused by dry-out of inner walls at the final stage of inside tube refrigerant evaporation followed by dropping the intensity of heat transfer remains unsolved. As alternative approach of the heat load modulation in AC systems there is a concept of incomplete refrigerant evaporation with overfilling air coils that leads to excluding a dry-out of inner surface of air coils and is realized through liquid refrigerant recirculation by injector (jet pump)

    Computational analysis of the influence of PCMs on building performance in summer

    No full text
    The insulation of buildings in summer requires to exploit the heat capacity of materials in order to delay the heat transfer through the building structure. Phase change materials (PCM) installed in buildings can reduce the indoor temperature; however, given their high cost, their use must be evaluated carefully. This paper investigates the structures that can be coupled with PCM efficaciously, and it highlights some problems that could be caused by PCMs. The investigation has been performed numerically by means of the Energy-Plus software

    Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.

    Get PDF
    Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis
    corecore