14 research outputs found

    Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration

    Get PDF
    Background: Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. Methods: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Results: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and −6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3. Conclusions: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer

    Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen

    Get PDF
    Social corbiculate bees such as honey bees and bumble bees maintain a specific beneficial core microbiome which is absent in wild bees. It has been suggested that maintaining this microbiome can prevent disease and keep bees healthy. The main aim of our study was to identify if there are any core bacterial groups in the non-corbiculate bees Ceratina and Megalopta that have been previously overlooked. We additionally test for associations between the core bee microbes and pollen provisions to look for potential transmission between the two. We identify three enterotypes in Ceratina samples, with thirteen core bacterial phylotypes in Ceratina females: Rosenbergiella, Pseudomonas, Gilliamella, Lactobacillus, Caulobacter, Snodgrassella, Acinetobacter, Corynebacterium, Sphingomonas, Commensalibacter, Methylobacterium, Massilia, and Stenotrophomonas, plus 19 in pollen (6 of which are shared by bees). Unlike Apis bees, whose gut microbial community differs compared to their pollen, Ceratina adults and pollen largely share a similar microbial composition and enterotype difference was largely explained by pollen age. Megalopta displays a highly diverse composition of microbes throughout all adults, yet Lactobacillus and Saccharibacter were prevalent in 90% of adults as core bacteria. Only Lactobacillus was both a core bee and pollen provision microbe in all three species. The consequences of such diversity in core microbiota between bee genera and their associations with pollen are discussed in relation to identifying potentially beneficial microbial taxa in wild bees to aid the conservation of wild, understudied, non-model bee species
    corecore