78 research outputs found
IRAS Results on Circumstellar Shells
Wetensch. publicati
A planetary system as the origin of structure in Fomalhaut's dust belt
The Sun and >15 percent of nearby stars are surrounded by dusty debris disks
that must be collisionally replenished by asteroids and comets, as the dust
would otherwise be depleted on <10 Myr timescales (ref. 1). Theoretical studies
show that disk structure can be modified by the gravitational influence of
planets (ref. 2-4), but the observational evidence is incomplete, at least in
part because maps of the thermal infrared emission from disks have low linear
resolution (35 AU in the best case; ref. 5). Optical images provide higher
resolution, but the closest examples (AU Mic and Beta Pic) are edge-on (ref.
6,7), preventing the direct measurement of azimuthal and radial disk structure
that is required for fitting theoretical models of planetary perturbations.
Here we report the detection of optical light reflected from the dust grains
orbiting Fomalhaut (HD 216956). The system is inclined 24 degrees away from
edge-on, enabling the measurement of disk structure around its entire
circumference, at a linear resolution of 0.5 AU. The dust is distributed in a
belt 25 AU wide, with a very sharp inner edge at a radial distance of 133 AU,
and we measure an offset of 15 AU between the belt's geometric centre and
Fomalhaut. Taken together, the sharp inner edge and offset demonstrate the
presence of planet-mass objects orbiting Fomalhaut.Comment: 8 pages, 3 figures, 1 tabl
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
Logics of knowledge and action: critical analysis and challenges
International audienceWe overview the most prominent logics of knowledge and action that were proposed and studied in the multiagent systems literature. We classify them according to these two dimensions, knowledge and action, and moreover introduce a distinction between individual knowledge and group knowledge, and between a nonstrategic an a strategic interpretation of action operators. For each of the logics in our classification we highlight problematic properties. They indicate weaknesses in the design of these logics and call into question their suitability to represent knowledge and reason about it. This leads to a list of research challenges
Interferometric Observations of Rapidly Rotating Stars
Optical interferometry provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Through direct observation of
rotationally distorted photospheres at sub-milliarcsecond scales, we are now
able to characterize latitude dependencies of stellar radius, temperature
structure, and even energy transport. These detailed new views of stars are
leading to revised thinking in a broad array of associated topics, such as
spectroscopy, stellar evolution, and exoplanet detection. As newly advanced
techniques and instrumentation mature, this topic in astronomy is poised to
greatly expand in depth and influence.Comment: Accepted for publication in A&AR
- …