159 research outputs found

    Evaluation of an immunodot blot technique for the detection of antibodies against Taenia solium larval antigens

    Get PDF
    Immunodiagnostic tests represent an important tool for diagnosis of cysticercosis, the disease caused by cysticerci of Taenia solium. Accurate diagnosis of neurocysticercosis (NCC) requires costly neuroimaging techniques (magnetic resonance imaging and computed tomography), which are seldom affordable for people in endemic countries. Hence, new low-cost diagnostic methods offering good sensitivity and specificity are needed. Here, we studied four immunodiagnostic tests immunodot blot Tsol-p27, a commercial ELISA, and Western blot Tsol-p27/TsolHSP36, and compared them with a commercial enzyme-linked immunoelectrotransfer blot (EITB) that we regarded as the gold standard method. The analyzed serum samples were obtained from 160 patients: 94 epileptics suspected of NCC, six individuals confirmed NCC-positive, and 60 with positive (30) or negative (30) serology for Chagas diseases. Of the 100 serum samples from epileptic patients, 13 were positive and 87 negative by EITB. Compared to Western blot Tsol-p27, immunodot blot Tsol-p27 offered similar specificity (97.8% vs. 95.6%) but better sensitivity (86.7% vs. 76.4%). The ELISA was similar to the immunodot blot Tsol-p27 regarding both sensitivity and specificity. Western blot TsolHSP36 provided the lowest sensitivity (61.9%) and specificity (86.1%). None of the antibodies in the serum samples from the Chagas control groups were recognized by immunodot blot Tsol-p27. Our results indicate that the immunodot blot Tsol-p27 provides good sensitivity and specificity. Furthermore, considering the simplicity and low cost of this test, it might be preferable as a diagnostic method in poorly equipped laboratories in endemic countries

    A membrane-inserted structural model of the yeast mitofusin Fzo1

    Get PDF
    Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements

    Analyses of an Expressed Sequence Tag Library from Taenia solium, Cysticerca

    Get PDF
    A method used to describe expressed genes at a specific stage in an organism is an EST library. In this method mRNA from a specific organism is isolated, transcribed into cDNA and sequenced. The sequence will derive from the 5′-end of the cDNA. The library will not have sequences from all genes, especially if they are expressed in low amounts or not at all in the studied stage. Also the library will mostly not contain full length sequences from genes, but expression patterns can be established. If EST libraries are made from different stages of the same organisms these libraries can be compared and differently expressed genes can be identified. Described here is an analysis of an EST library from the pig cysticerca which is thought to be similar to the stage giving the human neglected disease neurocysticercosis. Novel genes together with putative drug targets are examples of data presented

    High-Affinity Inhibitors of Human NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase: Mechanisms of Inhibition and Structure-Activity Relationships

    Get PDF
    BACKGROUND: 15-Hydroxyprostaglandin dehydrogenase (15-PGDH, EC 1.1.1.141) is the key enzyme for the inactivation of prostaglandins, regulating processes such as inflammation or proliferation. The anabolic pathways of prostaglandins, especially with respect to regulation of the cyclooxygenase (COX) enzymes have been studied in detail; however, little is known about downstream events including functional interaction of prostaglandin-processing and -metabolizing enzymes. High-affinity probes for 15-PGDH will, therefore, represent important tools for further studies. PRINCIPAL FINDINGS: To identify novel high-affinity inhibitors of 15-PGDH we performed a quantitative high-throughput screen (qHTS) by testing >160 thousand compounds in a concentration-response format and identified compounds that act as noncompetitive inhibitors as well as a competitive inhibitor, with nanomolar affinity. Both types of inhibitors caused strong thermal stabilization of the enzyme, with cofactor dependencies correlating with their mechanism of action. We solved the structure of human 15-PGDH and explored the binding modes of the inhibitors to the enzyme in silico. We found binding modes that are consistent with the observed mechanisms of action. CONCLUSIONS: Low cross-reactivity in screens of over 320 targets, including three other human dehydrogenases/reductases, suggest selectivity of the present inhibitors for 15-PGDH. The high potencies and different mechanisms of action of these chemotypes make them a useful set of complementary chemical probes for functional studies of prostaglandin-signaling pathways. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S2

    Effects of Dietary Restriction on Cancer Development and Progression

    Get PDF
    The effects of caloric restriction on tumor growth and progression are known for over a century. Indeed, fasting has been practiced for millennia, but just recently has emerged the protective role that it may exert toward cells. Fasting cycles are able to reprogram the cellular metabolism, by inducing protection against oxidative stress and prolonging cellular longevity. The reduction of calorie intake as well as short- or long-term fasting has been shown to protect against chronic and degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer. In vitro and in vivo preclinical models showed that different restriction dietary regimens may be effective against cancer onset and progression, by enhancing therapy response and reducing its toxic side effects. Fasting-mediated beneficial effects seem to be due to the reduction of inflammatory response and downregulation of nutrient-related signaling pathways able to modulate cell proliferation and apoptosis. In this chapter, we will discuss the most significant studies present in literature regarding the molecular mechanisms by which dietary restriction may contribute to prevent cancer onset, reduce its progression, and positively affect the response to the treatments

    CUL-2<sup>LRR-1</sup> and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis

    Get PDF
    Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2(LRR-1) associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2(LRR1) as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2(LRR-1), but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically

    Smoking, alcohol consumption, physical activity, and family history and the risks of acute myocardial infarction and unstable angina pectoris: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few studies investigated the association between smoking, alcohol consumption, or physical activity and the risk of unstable angina pectoris (UAP), while the strength of these associations may differ compared to other coronary diseases such as acute myocardial infarction (AMI). Therefore, we investigated whether the associations of these lifestyle factors with UAP differed from those with AMI. Additionally, we investigated whether these effects differed between subjects with and without a family history of myocardial infarction (MI).</p> <p>Methods</p> <p>The CAREMA study consists of 21,148 persons, aged 20-59 years at baseline and randomly sampled from the Maastricht region in 1987-1997. At baseline, all participants completed a self-administered questionnaire. After follow-up of maximally 16.9 years, 420 AMI and 274 UAP incident cases were registered. Incidence rate ratios (RRs) were estimated using Cox proportional hazards models.</p> <p>Results</p> <p>For both diseases, smoking increased the risk while alcohol consumption was associated with a protective effect. Associations with both risk factors were stronger for AMI than UAP, although this difference was only statistically significant for smoking. In men, an inverse association was found with physical activity during leisure time which seemed to be stronger for the risk of UAP than of AMI. On the contrary, physical activity during leisure time was associated with an increased risk of both AMI and UAP in women which seemed to be weaker for UAP than for AMI. Except for occupational physical activity in women, no significant interactions on a multiplicative scale were found between the lifestyle factors and family history of MI. Nevertheless, the highest risks were found in subjects with both a positive family history and the most unfavorable level of the lifestyle factors.</p> <p>Conclusions</p> <p>The strength of the associations with the lifestyle factors did not differ between AMI and UAP, except for smoking. Furthermore, the effects of the lifestyle factors on the risk of both coronary diseases were similar for subjects with and without a positive family history.</p

    Increased masticatory activity and quality of life in elderly persons with dementia-a longitudinal matched cluster randomized single-blind multicenter intervention study.

    Get PDF
    Background: Worldwide, millions of people are suffering from dementia and this number is rising. An index of quality of life (QoL) can describe the impact a disease or treatment has on a person's wellbeing. QoL comprises many variables, including physical health and function, and mental health and function. QoL is related to masticatory ability and physical activity. Animal studies show that disruption of mastication due to loss of teeth or a soft diet leads to memory loss and learning problems. Since these are common complaints in dementia, it is hypothesized that improvement of masticatory function and normalization of diet consistency can increase QoL in elderly persons suffering from dementia. Therefore, the goal of the present study is to examine whether an increase in masticatory activity, achieved by increased food consistency and enhancement of masticatory function through improved oral health care has a positive effect on QoL, including cognition, mood, activities of daily living (ADL), and circadian rhythm in elderly persons with dementia.Methods and design: The described study is a prospective longitudinal matched cluster randomized single-blind multicenter study. Participants are elderly persons living in the Netherlands, suffering from dementia and receiving psychogeriatric care. An intervention group will receive improved oral health care and a diet of increased consistency. A control group receives care as usual. Participants will be assessed four times; outcome variables besides QoL are cognition, mood, independence, rest-activity rhythm, blood pressure, and masticatory function.Discussion: This research protocol investigates the effect of an intervention executed by daily caregivers. The intervention will increase masticatory activity, which is achieved by three different actions, (providing oral health care, increasing food consistency, or a combination of both). There is a certain amount of variety in the nature of the interventions due to local differences in nursing homes. This might be a scientific weakness in the study design; however, a practical implementation of any findings will be subject to the same factors, making this study design clinically relevant.Trial registration: NTR1561. © 2013 Weijenberg et al.; licensee BioMed Central Ltd

    Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    Get PDF
    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans
    corecore