1,999 research outputs found
Taking the self out of self-rule
Many philosophers believe that agents are self-ruled only when ruled by their (authentic) selves. Though this view is rarely argued for explicitly, one tempting line of thought suggests that self-rule is just obviously equivalent to rule by the self. However, the plausibility of this thought evaporates upon close examination of the logic of ‘self-rule’ and similar reflexives. Moreover, attempts to rescue the account by recasting it in negative terms are unpromising. In light of these problems, this paper instead proposes that agents are self-ruled only when not ruled by others. One reason for favouring this negative social view is its ability to yield plausible conclusions concerning various manipulation cases that are notoriously problematic for nonsocial accounts of self-rule. A second reason is that the account conforms with ordinary usage. It is concluded that self-rule may be best thought of as an essentially social concept
Textures And Traction: How Tube-Dwelling Polychaetes Get A Leg Up
By controlling the traction between its body and the tube wall, a tube-dwelling polychaete can move efficiently from one end of its tube to the other, brace its body during normal functions (e.g., ventilation and feeding), and anchor within its tube avoiding removal by predators. To examine the potential physical interaction between worms and the tubes they live in, scanning electron microscopy was used to reveal and quantify the morphology of worm bodies and the tubes they produce for species representing 13 families of tube-dwelling polychaetes. In the tubes of most species there were macroscopic or nearly macroscopic (~10 μm–1 mm) bumps or ridges that protruded slightly into the lumen of the tube; these could provide purchase as a worm moves or anchors. At this scale (~10 μm-1 mm), the surfaces of the chaetal heads that interact with the tube wall were typically small enough to fit within spaces between these bumps (created by the inward projection of exogenous materials incorporated into the tube wall) or ridges (made by secretions on the interior surface of the tube). At a finer scale (0.01–10 μm), there was a second overlap in size, usually between the dentition on the surfaces of chaetae that interact with the tube walls and the texture provided by the secreted strands or microscopic inclusions of the inner linings. These linings had a surprising diversity of micro-textures. The most common micro-texture was a “fabric” of secreted threads, but there were also orderly micro-ridges, wrinkles, and rugose surfaces provided by microorganisms incorporated into the inner tube lining. Understanding the fine structures of tubes in conjunction with the morphologies of the worms that build them gives insight into how tubes are constructed and how worms live within them
Nucleosomes in serum as a marker for cell death
The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISA(Plus) (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\textbackslash{}\textbackslash{}biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVinterassay:3.0-4.1%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degreesC, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n = 220; mean = 361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n = 50; mean = 30 AU; P = 0.0001) and patients with inflammatory diseases (n = 40; mean = 296 AU; p = 0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (P = 0.0004)
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
Standardizing case definitions for monitoring the safety of maternal vaccines globally: GAIA definitions, a review of progress to date.
In 2014, the Global Alignment on Immunization safety Assessment in pregnancy consortium (GAIA) was formed, with the goal of developing a harmonized, globally-concerted approach to actively monitor the safety of vaccines in pregnancy. A total of 26 standardized definitions for the classification of adverse events have been developed. The aim of this review was to identify and describe studies undertaken to assess the performance of these definitions. A literature search was undertaken to identify published studies assessing the performance of the definitions, and reference lists were snowballed. Data were abstracted by two investigators and a narrative review of the results is presented. Four studies that have evaluated 13 GAIA case definitions (50%) were identified. Five case definitions have been assessed in high-income settings only. Recommendations have been made by the investigators to improve the performance of the definitions. These include ensuring consistency across definitions, removal of the potential for ambiguity or variations in interpretation and ensuring that higher-level criteria are acceptable at lower levels of confidence. Future research should prioritize the key case definitions that have not been assessed in low- and middle-income settings, as well as the 13 that have not undergone any validation
The heteronomy of choice architecture
Choice architecture is heralded as a policy approach that does not coercively reduce freedom of choice. Still we might worry that this approach fails to respect individual choice because it subversively manipulates individuals, thus contravening their personal autonomy. In this article I address two arguments to this effect. First, I deny that choice architecture is necessarily heteronomous. I explain the reasons we have for avoiding heteronomous policy-making and offer a set of four conditions for non-heteronomy. I then provide examples of nudges that meet these conditions. I argue that these policies are capable of respecting and promoting personal autonomy, and show this claim to be true across contrasting conceptions of autonomy. Second, I deny that choice architecture is disrespectful because it is epistemically paternalistic. This critique appears to loom large even against non-heteronomous nudges. However, I argue that while some of these policies may exhibit epistemically paternalistic tendencies, these tendencies do not necessarily undermine personal autonomy. Thus, if we are to find such policies objectionable, we cannot do so on the grounds of respect for autonomy
LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency
BACKGROUND: A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. METHODS: Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. FINDINGS: In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. CONCLUSIONS: LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics
Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve
To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world
Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types
The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.
BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care
- …