26 research outputs found

    An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p

    Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders

    No full text
    Choline acetyltransferase (ChAT) synthesizes acetylcholine in neurons and other cell types. Decreases in ChAT activity are associated with a number of disease states, and mutations in ChAT cause congenital neuromuscular disorders. The crystal structure of ChAT reported here shows the enzyme divided into two domains with the active site in a solvent accessible tunnel at the domain interface. A low-resolution view of the complex with one substrate, coenzyme A, defines its binding site and suggests an additional interaction not found in the related carnitine acetyltransferase. Also, the preference for choline over carnitine as an acetyl acceptor is seen to result from both electrostatic and steric blocks to carnitine binding at the active site. While half of the mutations that cause motor disorders are positioned to affect enzyme activity directly, the remaining changes are surprisingly distant from the active site and must exert indirect effects. The structure indicates how ChAT is regulated by phosphorylation and reveals an unusual pattern of basic surface patches that may mediate membrane association or macromolecular interactions

    Biological activity of two isomeric N-heteroaromatic selenosemicarbazones and their metal complexes

    No full text
    New square-planar Pd(II) and Pt(II) complexes with 8-quinolinecarboxaldehyde selenosemicarbazone have been synthesized and characterized by use of elemental analysis, molar conductivity measurements, and IR and NMR spectroscopy. The cytotoxic activity of the ligand, new Pt(II) and Pd(II) compounds, and previously synthesized Pd(II), Pt(II), Cd(II), and Ni(II) complexes with the analogous ligand, 2-quinolinecarboxaldehyde selenosemicarbazone, was tested against two human cancer cell lines: lung carcinoma (H460) and glioma (U251). The potential of these compounds to induce perturbations of the H460 cell cycle was also evaluated. These substances had an excellent radical-scavenging effect against ABTS radical cations. The best antimicrobial activity, among two yeasts and eight bacterial strains tested, was against Bacillus cereus
    corecore