29 research outputs found

    Survival of massive allografts in segmental oncological bone defect reconstructions

    Get PDF
    Reconstructions of large segmental bone defects after resection of bone tumours with massive structural allografts have a high number of reported complications including fracture, infection and non-union. Our goal is to report the survival and complications of massive allografts in our patients. A total of 32 patients were evaluated for fracture, infection, non-union rate and survival of their massive allograft reconstructions. The average follow-up for this group was five years and three months. The total fracture rate was 13% with a total infection rate of 16%. We found a low union rate of 25%. The total survival of the allografts was 80.8% (± 18.7%) after five years. We found a five-year allograft survival of 80.8% which is comparable with other studies

    Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.</p> <p>Methods</p> <p>Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS<sub>R2</sub>, U-2OS, and U-2OS<sub>R2 </sub>cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed.</p> <p>Results</p> <p>Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone.</p> <p>Conclusion</p> <p>Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma.</p

    Clinical application of scaffolds for cartilage tissue engineering

    Get PDF
    The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair

    Osteochondral autografting (mosaicplasty) in grade IV cartilage defects in the knee joint: 2- to 7-year results

    No full text
    The use of autologous osteochondral grafts (mosaicplasty) to repair articular cartilage defects is a well-established technique. Between 1998 and 2003, 19 patients with grade IV cartilage defects in the knee joint were treated by mosaicplasty. The average age of these 13 men (68%) and six women (32%) was 33.1 years (20–46). The mean follow-up was 32.4 months (84–24). The mean preoperative and postoperative Lysholm score was 45.8 (21–60) and 87.5 (74–100), respectively (p<0.001). Postoperative evaluation showed significant improvement. The results at the last follow-up were excellent in seven patients (27%), good in 11 patients (58%) and fair in one patient (15%). Preoperative complaints of pain, crepitation and locking disappeared in all patients. Magnetic resonance imaging (MRI) examination at the last follow-up visit revealed that congruency was restored in 16 (84.2%) without any signs of fissuring or delamination but in three patients (15.8%) a 1-mm difference between graft and recipient surface was detected. No complications were observed in the patients. Mosaicplasty is a really effective method of treatment for grade IV cartilage lesions in the knee joint
    corecore