24 research outputs found

    Establishing baseline criteria of cardio-ankle vascular index as a new indicator of arteriosclerosis: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cardio-ankle vascular index (CAVI) has been developed to represent the extent of arteriosclerosis throughout the aorta, femoral artery and tibial artery independent of blood pressure. To practically use CAVI as a diagnostic tool for determining the extent of arteriosclerosis, our study objectives were (1) to establish the baseline CAVI scores by age and gender among cardiovascular disease (CVD) risk-free persons, (2) to compare CAVI scores between genders to test the hypothesis that the extent of arteriosclerosis in men is greater than in women, and (3) to compare CAVI scores between the CVD risk-free group and the CVD high-risk group in order to test the hypothesis that the extent of arteriosclerosis in the CVD high-risk group is greater than in the CVD risk-free group.</p> <p>Methods</p> <p>Study subjects were 32,627 urban residents 20-74 years of age who participated in CVD screening in Japan during 2004-2006. A new device (model VaSera VS-1000) was used to measure CAVI scores. At the time of screening, CVD high-risk persons were defined as those having any clinical abnormalities of CVD, and CVD risk-free persons were defined as those without any clinical abnormalities of CVD. Age-specific average CAVI scores were compared between genders and between the CVD risk-free group and the CVD high-risk group. Student's t-test using two independent samples was applied to a comparison of means between two groups.</p> <p>Results</p> <p>Average age-specific baseline scores of CAVI in the CVD risk-free group linearly increased in both genders as their age increased. Average age-specific baseline scores of CAVI in the CVD risk-free group were significantly greater among men than among women. Average age-specific baseline scores of CAVI in the CVD risk-free group were significantly smaller than those in the CVD high-risk group in both genders after 40 years of age.</p> <p>Conclusions</p> <p>The baseline CAVI scores from the CVD risk-free group are useful for future studies as control values. The CAVI method is a useful tool to screen persons with moderate to advanced levels of arteriosclerosis.</p

    Landscape of somatic allelic imbalances and copy number alterations in HER2-amplified breast cancer

    Get PDF
    Introduction: Human epidermal growth factor receptor 2 (HER2)-amplified breast cancer represents a clinically well-defined subgroup due to availability of targeted treatment. However, HER2-amplified tumors have been shown to be heterogeneous at the genomic level by genome-wide microarray analyses, pointing towards a need of further investigations for identification of recurrent copy number alterations and delineation of patterns of allelic imbalance. Methods: High-density whole genome array-based comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) array data from 260 HER2-amplified breast tumors or cell lines, and 346 HER2-negative breast cancers with molecular subtype information were assembled from different repositories. Copy number alteration (CNA), loss-of-heterozygosity (LOH), copy number neutral allelic imbalance (CNN-AI), subclonal CNA and patterns of tumor DNA ploidy were analyzed using bioinformatical methods such as genomic identification of significant targets in cancer (GISTIC) and genome alteration print (GAP). The patterns of tumor ploidy were confirmed in 338 unrelated breast cancers analyzed by DNA flow cytometry with concurrent BAC aCGH and gene expression data. Results: A core set of 36 genomic regions commonly affected by copy number gain or loss was identified by integrating results with a previous study, together comprising > 400 HER2-amplified tumors. While CNN-AI frequency appeared evenly distributed over chromosomes in HER2-amplified tumors, not targeting specific regions and often < 20% in frequency, the occurrence of LOH was strongly associated with regions of copy number loss. HER2-amplified and HER2-negative tumors stratified by molecular subtypes displayed different patterns of LOH and CNN-AI, with basal-like tumors showing highest frequencies followed by HER2-amplified and luminal B cases. Tumor aneuploidy was strongly associated with increasing levels of LOH, CNN-AI, CNAs and occurrence of subclonal copy number events, irrespective of subtype. Finally, SNP data from individual tumors indicated that genomic amplification in general appears as monoallelic, that is, it preferentially targets one parental chromosome in HER2-amplified tumors. Conclusions: We have delineated the genomic landscape of CNAs, amplifications, LOH, and CNN-AI in HER2-amplified breast cancer, but also demonstrated a strong association between different types of genomic aberrations and tumor aneuploidy irrespective of molecular subtype

    In Vivo Evolution of Tumor-Derived Endothelial Cells

    Get PDF
    The growth of a malignant tumor beyond a certain, limited size requires that it first develop an independent blood supply. In addition to providing metabolic support, this neovasculature also allows tumor cells to access the systemic circulation, thus facilitating metastatic dissemination. The neovasculature may originate either from normal blood vessels in close physical proximity to the tumor and/or from the recruitment of bone marrow-derived endothelial cell (EC) precursors. Recent studies have shown that human tumor vasculature ECs may also arise directly from tumor cells themselves and that the two populations have highly similar or identical karyotypes. We now show that, during the course of serial in vivo passage, these tumor-derived ECs (TDECs) progressively acquire more pronounced EC-like properties. These include higher-level expression of EC-specific genes and proteins, a greater capacity for EC-like behavior in vitro, and a markedly enhanced propensity to incorporate into the tumor vasculature. In addition, both vessel density and size are significantly increased in neoplasms derived from mixtures of tumor cells and serially passaged TDECs. A comparison of early- and late-passage TDECs using whole-genome single nucleotide polymorphism profiling showed the latter cells to have apparently evolved by a process of clonal expansion of a population with a distinct pattern of interstitial chromosomal gains and losses affecting a relatively small number of genes. The majority of these have established roles in vascular development, tumor suppression or epithelial-mesenchymal transition. These studies provide direct evidence that TDECs have a strong evolutionary capacity as a result of their inherent genomic instability. Consequently such cells might be capable of escaping anti-angiogenic cancer therapies by generating resistant populations

    Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    Get PDF
    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted

    Le Village suisse comme modèle d'urbanisme

    Get PDF
    This chapter introduces systems biology, its context, aims, concepts and strategies. It then describes approaches and methods used for collection of high-dimensional structural and functional genomics data, including epigenomics, transcriptomics, proteomics, metabolomics and lipidomics, and how recent technological advances in these fields have moved the bottleneck from data production to data analysis and bioinformatics. Finally, the most advanced mathematical and computational methods used for clustering, feature selection, prediction analysis, text mining and pathway analysis in functional genomics and systems biology are reviewed and discussed in the context of use cases
    corecore