23 research outputs found

    Camels and Climate Resilience: Adaptation in Northern Kenya

    Get PDF
    In the drylands of Africa, pastoralists have been facing new challenges, including those related to environmental shocks and stresses. In northern Kenya, under conditions of reduced rainfall and more frequent droughts, one response has been for pastoralists to focus increasingly on camel herding. Camels have started to be kept at higher altitudes and by people who rarely kept camels before. The development has been understood as a climate change adaptation strategy and as a means to improve climate resilience. Since 2003, development organizations have started to further the trend by distributing camels in the region. Up to now, little has been known about the nature of, reasons for, or ramifications of the increased reliance on camels. The paper addresses these questions and concludes that camels improve resilience in this dryland region, but only under certain climate change scenarios, and only for some groups.This study was funded by The Royal Geographical Society with Institute of British Geographers Thesiger-Oman Fellowship

    Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

    Get PDF
    Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (r-HAT or ‘sleeping sickness’) caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies, is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Glossina swynnertoni and G.pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G.swynnertoni and G.pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T.b.rhodesiense, drive the epidemiology of r-HAT in wilderness areas
    corecore