17 research outputs found

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    Mechanism of estradiol-induced block of voltage-gated K+ currents in rat medial preoptic neurons.

    Get PDF
    The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K(+) channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K(+) channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-Estradiol rapidly (within seconds) and reversibly reduced the K(+) currents, showing an EC(50) value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca(2+), and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K(+) currents, membrane-impermeant forms of estradiol did not reduce the K(+) currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the K(V)-2-channel blocker r-stromatoxin-1. The time course of K(+) current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K(+), suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K(+) channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K(+) currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels
    corecore