460 research outputs found

    Proton and cadmium adsorption by the archaeon Thermococcus zilligii: Generalising the contrast between thermophiles and mesophiles as sorbents

    Get PDF
    Adsorption by microorganisms can play a significant role in the fate and transport of metals in natural systems. Surface complexation models (SCMs) have been applied extensively to describe metal adsorption by mesophilic bacteria, and several recent studies have extended this framework to thermophilic bacteria. We conduct acid-base titrations and batch experiments to characterise proton and Cd adsorption onto the thermophilic archaeon Thermococcus zilligii. The experimental data and the derived SCMs indicate that the archaeon displays significantly lower overall sorption site density compared to previously studied thermophilic bacteria such Anoxybacillus flavithermus, Geobacillus stearothermophilus, G. thermocatenulatus, and Thermus thermophilus. The thermophilic bacteria and archaea display lower sorption site densities than the mesophilic microorganisms that have been studied to date, which points to a general pattern of total concentration of cell wall adsorption sites per unit biomass being inversely correlated to growth temperature

    Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo

    Get PDF
    Formation of the nuclear envelope (NE) around segregated chromosomes occurs by the reshaping of the endoplasmic reticulum (ER), a reservoir for disassembled nuclear membrane components during mitosis. In this study, we show that inner nuclear membrane proteins such as lamin B receptor (LBR), MAN1, Lap2ÎČ, and the trans-membrane nucleoporins Ndc1 and POM121 drive the spreading of ER membranes into the emerging NE via their capacity to bind chromatin in a collaborative manner. Despite their redundant functions, decreasing the levels of any of these trans-membrane proteins by RNAi-mediated knockdown delayed NE formation, whereas increasing the levels of any of them had the opposite effect. Furthermore, acceleration of NE formation interferes with chromosome separation during mitosis, indicating that the time frame over which chromatin becomes membrane enclosed is physiologically relevant and regulated. These data suggest that functionally distinct classes of chromatin-interacting membrane proteins, which are present at nonsaturating levels, collaborate to rapidly reestablish the nuclear compartment at the end of mitosis

    Age Mosaicism across Multiple Scales in Adult Tissues

    Get PDF
    Most neurons are not replaced during an animal’s lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using ^(15)N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization

    Single Bead Affinity Detection (SINBAD) for the Analysis of Protein-Protein Interactions

    Get PDF
    We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform a pull-down experiment
    • 

    corecore