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Abstract 

Adsorption by microorganisms can play a significant role in the fate and transport of 

metals in natural systems.  Surface complexation models (SCMs) have been applied 

extensively to describe metal adsorption by mesophilic bacteria, and several recent 

studies have extended this framework to thermophilic bacteria.  We conduct acid-base 

titrations and batch experiments to characterise proton and Cd adsorption onto the 

thermophilic archaeon Thermococcus zilligii. The experimental data and the derived 

SCMs indicate that the archaeon displays significantly lower overall sorption site 

density compared to previously studied thermophilic bacteria such Anoxybacillus 

flavithermus, Geobacillus stearothermophilus, G. thermocatenulatus, and Thermus 

thermophilus.  The thermophilic bacteria and archaea display lower sorption site 

densities than the mesophilic microorganisms that have been studied to date, which 

points to a general pattern of total concentration of cell wall adsorption sites per unit 

biomass being inversely correlated to growth temperature. 

 

 

Keywords: proton adsorption; metal adsorption; surface complexation modeling; 

archaea; bacteria; thermophile
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1. Introduction 

 Many previous investigations have focussed on the adsorption of dissolved 

metals by bacteria (Fein, 2000; Fein et al., 2001; Borrok et al., 2005; Daughney and 

Fortin, 2006).  The reactivity of bacterial cells toward dissolved metals is conferred by 

the cell wall functional groups (carboxyl, phosphoryl, amino, etc.), in combination 

with a high surface area to volume ratio and a surface electric charge that is usually 

negative under environmental conditions.  Metal adsorption by bacteria is of interest 

because of its potential to influence the fate and transport of dissolved ions in natural 

water-rock systems.   

This study extends previous work conducted with bacteria by characterising 

proton and metal adsorption by a member of the Domain Archaea, which to our 

knowledge has not been previously reported.  The archaea are of interest from the 

perspective of metal adsorption because, like bacteria, they are ubiquitous in aquatic 

and geologic environments and may account for up to 20% of the biomass on earth 

(DeLong and Pace, 2001). Archaea were first detected in extreme environments such 

as hot springs (Woese and Fox, 1977), but they are now known to be widespread in 

soils and freshwater and marine settings as well (Hershberger et al., 1996; Bintrim et 

al., 1997; DeLong, 1998; Vetriani et al., 1998; DeLong and Pace, 2001). The archaea 

are also of interest as metal sorbents because they are phylogenetically distinct from 

bacteria and have a different cell wall structure (Madigan and Martinko, 2005).  

Peptidoglycan is the dominant bacterial cell wall component, whereas the archaeal 

cell wall is completely devoid of peptidoglycan and instead is made up mainly of 

pseudomurein or protein subunits, depending on the species. The bacterial cell wall 

may include teichoic acid, but its presence has not been reported in the archaeal cell 

wall.  Bacterial cell wall phospholipids are comprised mainly of D-glycerol, generally 
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with ester linkages, and with fatty acid side chains without branches or rings, whereas 

archaeal cell wall phospholipids are comprised of L-glycerol, exclusively with ether 

linkages, and with isoprenoid side chains that may include multiple branches and 

cyclopropane or cyclohexane rings (De Rosa et al. 1986; Koga and Morii, 2005).  

These structural differences convey thermostability and solute impermeability to the 

archaeal cell wall, which are believed to be important for survival in extreme 

environments (Koga and Morii, 2005), and which may also influence cell wall 

reactivity towards protons and dissolved metals.  

The experiments conducted in this study are performed with Thermococcus 

zilligii, an archaeon that was originally isolated from a freshwater hot spring in New 

Zealand (Klages and Morgan, 1994). Growth of T. zilligii is strictly anaerobic, 

requires sulphur and a source of organic carbon, and occurs optimally at 75-80°C 

(Ronimus et al., 1997).  The adsorption experiments conducted in this study are based 

on established methods (Fein et al., 1997; Daughney et al., 1998, 2001; Yee and Fein, 

2001; Haas, 2004; Borrok and Fein, 2005; Johnson et al., 2007; Ginn and Fein, 2008) 

in order to facilitate comparison with previous investigations.  Acid-base titrations 

and batch adsorption experiments are used to characterise proton and metal adsorption 

to T. zilligii.  Cadmium is selected as the model metal because it is a common 

contaminant, and because its adsorption by various mesophiles and thermophiles has 

been previously described (Yee and Fein, 2001; Borrok et al., 2004a; Johnson et al., 

2007).   

This study also aims to summarise the proton and metal adsorption properties 

of thermophiles as a group (optimal growth temperatures in the range 40-80°C).  Most 

previous investigations of proton and metal adsorption by bacteria have involved 

mesophilic species (optimal growth temperatures in the range 20-40°C), but several 
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recent investigations have focussed on proton and/or metal adsorption by thermophilic 

bacteria (Wightman et al., 2001; Hetzer et al., 2006; Burnett et al., 2006a,b, 2007; 

Heinrich et al., 2007, 2008; Ginn and Fein, 2008; Lalonde et al., 2008; Tourney et al., 

2008; Özdemir et al., 2009).  Surface Complexation Models (SCMs) have been 

developed to describe proton and metal adsorption by both thermophilic and 

mesophilic bacteria, and can provide a framework for assessing any differences that 

might exist in the adsorptive properties of the two groups, through comparison of 

model parameters.  The SCMs previously developed to describe proton and metal 

adsorption by thermophilic bacteria do seem to reveal certain general contrasts to the 

so-called “universal” SCMs for proton and metal adsorption for mesophilic bactera 

(Yee and Fein, 2001; Borrok et al., 2005; Johnson et al., 2007).   

However, previously published SCMs for proton and/or metal adsorption by 

bacteria have employed different assumptions, and so a direct comparison of model 

parameters for individual species or consortia is not straight forward.  Most previously 

published SCMs have incorporated reactions of the following types to describe proton 

and metal adsorption, respectively, by cell wall functional groups: 
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where square brackets represent the concentration of the enclosed cell wall 

surface species and a represents the activity of the subscripted aqueous species. The 

number of different types of surface sites employed in previous SCMs varies from one 

to four (but proton and metal adsorption are almost always assumed to follow a 1 to 1 

stoichiometry).  In some models, there is assumed to be a discrete value for each 

stability constant (e.g. Fein et al., 1997), whereas other models invoke an affinity 

spectrum approach (e.g. Cox et al., 1999).  “Non-electrostatic” models do not account 

for the effect of the cell surface electric field on proton or metal adsorption (e.g. 

Borrok et al., 2005; Johnson et al., 2007), whereas “electrostatic” models involve 

adjustment of stability constants as follows: 

  RTZFKK /expint        (5) 

where K
int

 is the intrinsic stability constant referenced to zero surface charge 

and zero surface coverage, and the variables Z, F, ψ, R and T refer to the charge of the 

adsorbing ion, Faraday’s constant, the electric potential at the location of adsorption, 

the gas constant and the absolute temperature, respectively.  Various electric double 

layer models have been integrated into SCMs to determine the electric potential of the 

cell surface, including the constant capacitance model (Fein et al., 1997; Daughney et 

al., 1998; Ngwenya et al., 2003), the Stern model (Daughney and Fein, 1998), the 

diffuse layer and triple layer models (Borrok and Fein, 2005) and the Donnan model 

(Yee et al., 2004, Burnett et al., 2006a,b; Heinrich et al., 2007, 2008).   

In this study, we follow the approach of Borrok et al. (2005) and use a 

consistent modelling framework to re-develop SCMs for proton and Cd adsorption by 

the archaeon T. zilligii and previously studied thermophilic bacteria (Wightman et al., 



 7 

2001; Hetzer et al., 2006; Burnett et al., 2006a,b, 2007; Heinrich et al., 2007, 2008; 

Ginn and Fein, 2008; Tourney et al., 2008).  The same SCM framework is employed 

to re-develop universal SCMs for proton and Cd adsorption by mesophilic bacteria 

(Yee and Fein, 2001; Borrok et al., 2005; Johnson et al., 2007).  SCM model 

parameters are then compared for uniform conditions of pH, ionic strength and 

sorbate-to-biomass ratio, with the aim of identifying and quantifying any significant 

and systematic differences between mesophiles and thermophiles. 

 

2. Materials and methods 

2.1 Preparation of archaeal suspensions 

 T. zilligii strain AN1 (DSM 2270) was grown under anaerobic conditions in 

800 ml of medium (5% inoculum volume) at 75°C without agitation.  The medium 

contained (per litre): 8.00 g of trypticase peptone, 2.50 g of NaCl, 1.50 g of KH2PO4, 

1.00 g of sodium thioglycollate, and 4.00 g of L-cystine. L-cystine was dissolved at 

double-strength (8.00 mg/l) in boiling water at pH 12 prior to addition to the medium.  

The medium was adjusted to the final pH value of 7.4 and autoclaved anaerobically 

under a nitrogen atmosphere.  Cells were harvested after 36 h incubation in the middle 

of the exponential growth phase, at a culture optical density at 600 nm (OD600) of 

roughly 0.2, by centrifugation at 1,850g. Cells were washed five times in 250 ml 0.01 

M NaNO3 to guarantee complete removal of the growth medium. After the final wash, 

the cell pellet was resuspended in a known weight of 0.01 M NaNO3 and OD600 was 

measured relative to the electrolyte. 

 Biomass concentrations in the cell suspensions were determined using several 

methods. Aliquots of cell suspension were weighed and then centrifuged at 1,850g for 

one hour, stopping at 20 minute intervals to decant the supernatant, whereupon the 
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final wet weight of the cell pellet was determined. The dry mass of the cell pellet was 

determined after drying at 80°C to constant weight.  The relationships between wet 

and dry biomass concentrations and optical density were established by measuring 

OD600 of washed cell suspensions. Total cell numbers were measured by counting in a 

Thoma counting chamber (depth 0.02 mm) under phase-contrast microscopy.  

Assessments of biomass concentration were performed on three individual cell 

cultures to determine inter-culture variability. 

Cell dimensions were obtained using scanning electron microscopy. Cells 

were captured onto a 0.22 µm filter and fixed in 2.5% glutaraldehyde. The filter was 

exposed to four changes of 0.1 M sodium cacodylate buffer. After sequential 

dehydration in an increasing concentrations of ethanol (50%, 75%, 90%, and absolute 

ethanol), the filter was dried at the critical point, sputtered with platinum, and 

examined using a Hitachi S-4100 field emission scanning electron microscope. 

 

2.2 Acid-base titrations 

 A known weight (40–50 g) of cell suspension (2.5–8.5 dry g per litre, 

containing the combined biomass from between 4 and 19 individual cultures) was 

transferred into an air-tight polystyrene vessel. The pH was adjusted to roughly 3.5 by 

the addition of a known volume of standardized 0.1 M HNO3, and the suspension was 

mixed with an overhead magnetic stirrer and bubbled with humid CO2-free N2 gas for 

30 min, to remove dissolved CO2 from the suspension. The titration was conducted in 

an up-pH direction to pH 10 at 22 ± 1°C using standardized CO2-free 0.1 M NaOH 

and a Mettler DL 22 autotitrator. Throughout the duration of the titration, the 

suspension was continually stirred and bubbled with N2 gas. Following each addition 

of titrant, the pH of the suspension was recorded when a stability criterion of 5 
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mV/min was obtained. After the completion of the first up-pH titration, the 

suspension was acidified to roughly pH 3.5, and a second up-pH titration was 

performed to investigate the reversibility of proton adsorption. The reproducibility of 

the experimental method was evaluated by performing duplicate titrations of two 

separate aliquots (ca. 50 g) of a single parent suspension. The total volume of acid and 

base added, relative to the initial volume of the suspension, was such that the 

maximum dilution was less than 10% (accounted for in modelling of the data).  The 

entire procedure was conducted with four independently prepared parent suspensions, 

to examine inter-culture variability.  Control titrations of the electrolyte alone were 

performed on a regular basis to test for infiltration of CO2 into the titrants and the 

experimental apparatus.  

 

2.3 Cadmium adsorption experiments 

T. zilligii cells were cultured, rinsed and resuspended in 0.01 M NaNO3 as 

described above, OD600 was measured to determine biomass concentration, and then 

three dilutions of the cell suspension were prepared in 0.01 M NaNO3, having 100%, 

50% and 25% the biomass concentration of the parent suspension.  Known weights of 

the three diluted suspensions were then spiked with 1000 ppm cadmium atomic 

absorption standard solution (Merck, Cd(NO3)2 in 0.5% HNO3) to a final yield a 

concentration of 5 ppm cadmium. All three cell suspensions were examined by phase-

contrast microscopy to check cell integrity.  Each of the three cadmium-spiked cell 

suspensions was then divided into 5 ml aliquots and transferred into 8 to 10 individual 

test tubes.  The pH of each test tube was adjusted by adding small volumes of 0.1 M 

NaOH solution, to cover the pH range of roughly 3.5 to 8 for each of the three 

dilutions of the parent cell suspension.  The test tubes were equilibrated in an orbital 
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mixer incubator set at 100 rpm and 22°C.  Following equilibration, the samples were 

centrifuged at 1,850g for 10 minutes. An aliquot of the supernatant was decanted and 

acidified with concentrated HNO3 solution (ARISTAR grade) for subsequent 

cadmium analysis by flame atomic absorption spectroscopy (GBC Avanta). The 

remaining supernatant was used for measurement of final equilibrium pH.  In an 

initial experiment to assess the kinetics of cadmium adsorption, the equilibration time 

was varied (10 min to 120 min in 10 min intervals, 180 min, and 240). The kinetic 

experiment indicated that equilibration occurred within the first 120 minutes, and thus 

120 minutes was used as the equilibration time for all subsequent experiments.  The 

concentration of cadmium adsorbed by the cells in each sample was calculated by 

subtracting the cadmium ion concentration remaining in the supernatant (determined 

by atomic absorption spectroscopy) from the original concentration of 5 ppm. The 

entire procedure was conducted with four independently prepared parent suspensions, 

to examine inter-culture variability.  Control experiments involving Cd in the 

electrolyte but without T. zilligii cells were performed to test for Cd precipitation 

and/or adsorption to the experimental apparatus.  Control experiments involving 

biomass in electrolyte without added Cd were conducted to test for Cd release from T. 

zilligii cells. 

 

2.4 Surface Complexation Modelling 

 SCMs were constructed using FITMOD (Daughney et al., 2004), a modified 

version of the computer program FITEQL 2.0 (Westall, 1982). All SCMs developed 

in this study include equilibria describing the dissociation of water, the acid, the base, 

and the electrolyte.  SCMs for Cd adsorption also incorporate reactions for Cd 

hydrolysis and Cd complexation by carbon dioxide, with stability constants taken 
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from the Critical Stability Constants Database (Smith and Martell, 1976). All stability 

constants are adjusted for ionic strength using the Davies equation (Langmuir, 1997), 

and all values tabulated in this paper are referenced to zero ionic strength and 25°C.   

SCMs were used for three purposes in this investigation. Firstly, SCMs were 

used to derive model curves for proton and metal adsorption by previously studied 

mesophilic and thermophilic species and consortia.  This was achieved by using 

previously published SCM parameters and configurations (e.g. number of sites, 

electrostatic double layer model, etc.), without modification or optimisation.  The only 

adjustment to the previously published SCMs was to generate the predictions for 

uniform conditions to enable meaningful comparison.  The selected conditions for 

comparison were biomass concentration of 1 wet gram per litre, ionic strength of 0.01 

M, and, for simulations involving Cd adsorption, a total Cd concentration of 5  10
-5

 

M.  These conditions for the comparison were selected because they are representative 

of the experimental conditions used in most previous studies, and hence the published 

SCM parameters were not being used to extrapolate proton and/or Cd adsorption too 

far outside the range used for the original model calibration.  SCM values of the initial 

proton condition (TH
0
, cf. Westall et al., 1995; Fein et al., 2005) were included in the 

modelling where available. Comparison of SCM curves that did or did not consider 

the initial proton condition was achieved by evaluating the change in adsorption over 

the pH range of interest, as opposed to the absolute amount of adsorption. 

Secondly, SCMs were developed in this study to describe proton and Cd 

adsorption by T. zilligii.  The SCMs developed for this purpose were based on a 

discrete site, non-electrostatic approach in order to permit comparison to the widest 

range of previous investigations (many previous investigations did not report all of the 

necessary information to enable application of an electrostatic modelling approach). 



 12 

Fitting of the model to the experimental data involved optimising the total 

concentration of each type of surface site and the values of the stability constants 

describing proton and metal adsorption (Equations 3 and 4).  Model fit was quantified 

using the overall variance V(Y) reported by FITMOD, where Y represents the 

difference in the total proton or metal mass balance calculated from the model in 

comparison to the experimental data, weighted for experimental uncertainty and the 

number of degrees of freedom in the model optimisation (Westall, 1982; Heinrich et 

al., 2008).  The ideal value for V(Y) is 1, indicating that the error in the model is 

equal to the estimated uncertainty in the experimental data. Lower numbers indicate 

that the model contains too many adjustable parameters or that the error estimates are 

too large, whereas numbers much higher than 1 indicate a poor fit to the data. 

Generally a value of V(Y) between 1 and 20 is considered an indication of adequate 

model fit to a single experimental dataset (Westall, 1982), whereas an adequate fit to 

data from several different experiments, particularly for independent cultures of 

bacteria, can be indicated by V(Y) up to ca. 50 (Burnett et al., 2007).  Confidence 

intervals for V(Y) were calculated as described by Heinrich et al. (2008): 

   
2

2/

2

2/1

)(
,

)(

 

RQPRQP nnnYVnnnYV 



   (6) 

where nP, nQ and nR represent the number of data points, the number of components 

for which both free concentration and total concentration are known, and the number 

of parameters being optimised, respectively, and
2

p  is the quantile of the chi-square 

distribution having ( nP  nQ - nR) degrees of freedom with exceedence probability p.  

For this study, V(Y) values of different models were considered significantly different 

when their 95% confidence intervals did not overlap. 
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Thirdly, in this study we follow the approach of Borrok et al. (2005) and re-

develop SCMs using a consistent modelling framework to describe proton and Cd 

adsorption by the archaeon T. zilligii and previously studied mesophilic and 

thermophilic bacteria (Wightman et al., 2001; Yee and Fein, 2001; Borrok et al., 

2005; Hetzer et al., 2006; Burnett et al., 2006a,b, 2007; Johnson et al., 2007; Heinrich 

et al., 2007, 2008; Ginn and Fein, 2008).  This involves using the previously 

published SCMs to predict proton and Cd adsorption for standard conditions as 

described above (1 g wet biomass per litre, 0.01 M ionic strength, 5  10
-5

 M total Cd) 

at increments of 0.25 pH units from pH 3 to 10, and then fitting a new three-site non-

electrostatic SCM to the resulting dataset.  This ensures that the re-developed SCMs 

all employ the same model assumptions, cover the same chemical conditions, and are 

all based on the same number of data points, such that meaningful comparisons can be 

made between the SCM parameters for different species and consortia.  This approach 

of re-developing previously published SCMs is justified for the aim of this study, i.e. 

comparison of the adsorptive properties of thermophiles and mesophiles, because 

several studies have shown that various types and configurations of electrostatic and 

non-electrostatic SCMs can provide a good fit to experimental data for proton and 

metal adsorption by bacteria (Daughney and Fein, 1998; Borrok and Fein, 2005; Fein 

et al., 2005).  For example, some of the previously published SCMs invoke four 

different types of surface sites, but may cover a broader range of pH than we employ 

for the comparisons made in the present investigation.  The suitability of the three-site 

modelling approach used in this study is indicated by the fact that all of the re-

developed SCMs possess V(Y) values that are statistically indistinguishable from the 

ideal value of 1, meaning that the re-developed three-site non-electrostatic SCMs 

would fit the original experimental data as well as the originally published SCMs for 
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the pH range from 3 to 10.  For the pH range and experimental conditions considered 

in the present study, four-site models either did not converge or did not offer 

statistically significant improvement in fit compared to the three-site models. 

 

3. Results and Discussion 

3.1 Characteristics of T. zilligii cells 

After 36 h incubation time, T. zilligii populations were in mid-exponential 

growth phase (growth curves not shown).  Examination by optical and scanning 

electron microscopy indicated that the cells were intact, and had coccoid shape and 

diameter roughly 1 m, in agreement with Ronimus et al. (1997).  Assessments of 

biomass concentration showed that OD600 = 1.000 corresponded to 5.0  10
8
 cells per 

ml and 0.329 g dry biomass per litre.  The ratio of wet to dry biomass was determined 

to be 11.1 to 1. These characteristics of T. zilligii cells are comparable to other 

microorganisms for which SCMs have been developed (Fein et al., 1997; Wightman 

et al., 2001; Yee et al., 2004; Burnett et al., 2006a; Hetzer et al., 2006; Heinrich, 

2008). 

 

3.2 Proton adsorption by T. zilligii 

 The experimental titration data show that T. zilligii cell suspensions possess 

substantial buffering capacity over the range from pH 3 to 10 (Figure 1).  Buffering 

capacity increases with the weight of cells present (Figure 1a), but the data show good 

agreement when normalised to biomass concentration (Figure 1b). There is excellent 

agreement between the first and second titrations of a single aliquot cell suspension 

(indicated by points of the same shape on Figure 1), indicating that proton 

adsorption/desorption reactions are rapid and reversible on the time scale of these 
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experiments (ca. 1 h).  Control titrations indicated that the electrolyte alone possessed 

negligible buffering capacity (data not shown), and hence the buffering capacity 

observed for T. zilligii cell suspensions is inferred to arise from desorption of protons 

from cell surface functional groups.  Several previous studies conducted with 

mesophilic and thermophilic bacteria have reported similar results, with buffering 

capacity of cell suspensions observed to be reversible, reproducible and similarly 

related to pH and biomass concentration (Fein et al., 1997; Daughney and Fein, 1998; 

Daughney et al., 1998, 2001; Cox et al., 1999; Yee and Fein, 2001; Borrok et al., 

2005; Fein et al., 2005; Burnett et al., 2006a; Hetzer et al., 2006; Heinrich et al., 2007, 

2008).   

 The titration datasets were modelled using FITMOD and non-electrostatic, 

discrete site SCMs (Figure 1b, Table 1).  When data from the four individually 

prepared cell suspensions were modelled separately, SCMs that incorporate only two 

types of surface sites yielded V(Y) values in excess of the acceptable threshold of 20 

for two of the datasets, indicating relatively poor fit to the data.  SCMs that 

incorporate three types of surface sites offer improved fits to three of the individual 

datasets, with convergence not being achieved for the dataset with the highest biomass 

concentration. Non-convergence is an indication that the additional type of surface 

site in the model is not warranted by the experimental data, and appropriate model 

configuration is known to depend on biomass concentration, pH range and so on (e.g. 

Daughney et al., 1998).    SCMs incorporating four different types of surface sites 

either fail to converge or do not offer significant improvement in fit relative to the 

three-site models.  The three-site SCM also provides the best fit when the data from 

all four individual titrations are modelled simultaneously (Table 1).  Hence we 

conclude that SCMs that incorporate three distinct types of surface sites are most 
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appropriate for the data obtained from titration of T. zilligii cell suspensions, although 

we acknowledge that the number of sites required to fit the data is controlled to some 

extent by the SCM framework employed and the pH range of the titration.   

The three-site SCM that provides the best fit to all of the titration data has 

V(Y) = 13.6 (95% confidence limits for V(Y) are 11.8 to 15.8), with pKa values for 

the sites being 4.60 ± 0.21, 6.26 ± 0.38 and 8.96 ± 0.14, and the respective site 

concentrations (in 10
-5

 mol per gram wet biomass) being 2.51 ± 0.81, 2.51 ± 0.21 and 

2.51 ± 1.26 (uncertainties in pKa values and site concentrations represent 1 values 

derived from modelling the four datasets independently).  Based on the magnitudes of 

the modelled pKa values, we speculate that the T. zilligii surface sites correspond to 

carboxyl, phosphoryl and amino functional groups, as observed in previous 

investigations of Gram-positive and Gram-negative bacteria.  

Specific studies of the cell wall composition of T. zilligii are not available, but 

structural inferences can be based on descriptions for other Thermococci (Madigan 

and Martinko, 2005). Like other Thermococci, the T. zilligii cell wall is likely 

dominated by pseudomurein (without peptidoglycan or teichoic acid), which would 

likely reduce the concentration of phosphoryl groups in particular and probably also 

carboxyl groups relative to the bacterial cell wall.  Sulphate groups may be present in 

the carbohydrate cell walls of the halophilic archaea but unlikely to be present in the 

cell wall of Thermococci. Krader and Emerson (2004) have inferred the presence of 

an S-layer of crystalline protein outside the cell wall of several Thermococci, and 

although T. zilligii was not specifically investigated, it may also have an S-layer, 

which may contribute additional amino groups without restricting the access of ions to 

cell wall functional groups. Spectroscopic analysis would be required to confirm the 

presence or absence of specific functional groups in the cell wall of T. zilligii. 
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3.3 Cd adsorption by T. zilligii 

 Control experiments indicated negligible loss of Cd from solution in the 

absence of T. zilligii cells (data not shown).  In the presence of T. zilligii cells, Cd 

adsorption increases with increasing biomass concentration and increasing pH (Figure 

2 displays data from a representative cell suspension).  Similar patterns of dependence 

of metal adsorption on biomass-to-sorbate ratio and pH have been observed for many 

species of mesophilic and thermophilic bacteria (Fein et al., 1997; Daughney and 

Fein, 1998; Daughney et al., 1998; Fowle and Fein, 1999; Daughney et al., 2001; Yee 

and Fein, 2001; Ngwenya et al., 2003; Borrok et al., 2004a,b, 2005; Hetzer et al., 

2006; Burnett et al., 2006b, 2007; Johnson et al., 2007; Ginn and Fein, 2008).  Hence, 

as inferred for metal adsorption by bacteria, the patterns of Cd adsorption observed 

for T. zilligii likely arise from interactions between Cd and functional groups on the 

cell surface, and the extent of adsorption is enhanced by an increase in the biomass-to-

Cd concentration ratio and by reduction in the competition between Cd
2+

 and H
+
 ions 

(as pH increases). 

 The Cd adsorption datasets were modelled using FITMOD and non-

electrostatic, discrete site SCMs (Figure 2, Table 2).  The SCMs developed to fit the 

Cd adsorption data incorporate three distinct types of surface functional groups, using 

the best-fitting pKa values and site concentrations derived from the titration data 

(Table 1).  Data from each of the four independently prepared cell suspensions can be 

adequately matched by SCMs that invoke adsorption of Cd
2+

 onto only one type of 

surface functional group (1:1 stoichiometry).  The best fit is obtained for Cd
2+

 

adsorption onto the functional group having pKa = 4.60.  SCMs that consider Cd
2+

 

adsorption onto any combination of two or three different types of surface sites do not 



 18 

converge (results not tabulated), indicating that inclusion of the additional reaction 

mechanisms are not warranted by the experimental data.  When data from all four Cd 

adsorption experiments are modelled simultaneously, again the best fitting SCM is 

based on adsorption of Cd
2+

 onto only one type of surface site, namely that having 

pKa = 4.60 (Table 2).  Several previous studies involving mesophilic and thermophilic 

bacteria have developed similar SCMs, i.e. with inclusion of reactions for proton 

adsorption onto three different types of surface sites but metal adsorption onto only 

one type of surface site (Fein et al., 1997; Daughney and Fein, 1998; Daughney et al., 

1998, 2001; Yee et al., 2001; Burnett et al., 2006a; Hetzer et al., 2006).  However, we 

acknowledge that the number and type of reaction sites required to fit the data is 

controlled by the SCM framework employed and the range of pH and biomass-to-Cd 

concentration ratio used in the experiments, such that spectroscopic evidence is 

required to determine the chemical environment of the bound metal and the identity of 

the surface site(s) involved. 

 

3.4 Comparison of thermophiles and mesophiles as sorbents 

 Proton adsorption by mesophilic bacteria has been generalised by Borrok et al. 

(2005), who developed a universal non-electrostatic SCM based on experimental 

titration data for 36 different individual species and consortia.  This universal SCM 

for proton adsorption by mesophilic bacteria incorporates four different types of 

surface sites with pKa values of 3.1, 4.7, 6.6 and 9.0 and a total site concentration of 

3.2 ± 1.0 (1) moles per gram wet biomass.  Figure 3 displays the expected buffering 

capacity as a function of pH for a suspension of mesophilic bacteria having biomass 

concentration of 1 wet g per litre, based on the model of Borrok et al. (2005).  The 

universal model of Borrok et al. (2005) is plotted in Figure 3 corresponding to a 
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reasonable upper bound for growth temperature of 37C, but note that the model is 

based on cultures with a range of growth temperatures, including some datasets for 

which growth temperature is unknown. Borrok et al. (2005) concluded that ionic 

strength, temperature and growth conditions have relatively little influence on proton 

adsorption by mesophilic bacteria, and hence these factors are ignored in the universal 

SCM, but feature into determination of the 1 error bounds displayed in Figure 3.  

Universal SCMs for proton adsorption by mesophilic bacteria have also been 

developed by Yee and Fein (2001) for laboratory-maintained cultures grown at 32C 

and by Johnson et al. (2007) for field consortia cultured at room temperature (inferred 

to be 25C), both of which yield model curves that are comparable to the SCM 

derived by Borrok et al. (2005).   

 Proton adsorption characteristics of previously studied thermophilic bacteria 

are generally similar to each other, but all of the thermophiles possess relatively low 

adsorptive capacity per unit wet biomass compared to mesophilic bacteria (Figure 3).  

One possible exception is for the thermophile B. licheniformis S-86, which when 

cultured at 30C has a similar buffering capacity to the universal mesophilic SCM of 

Borrok et al. (2005) (Tourney et al., 2008; unknown wet-to-dry weight ratio prevents 

plotting of a model curve for B. licheniformis S-86 data in Figure 3).  Model curves 

for proton adsorption by thermophilic bacteria in stationary phase generally fall near 

or just outside the lower 1 bound for mesophiles, but thermophilic populations in 

exponential phase display greater buffering capacity that is similar to the universal 

SCM from Borrok et al. (2005).  Heinrich et al. (2008) have concluded that variations 

in buffering capacity as a function of growth time may be caused by loss of cell wall 

integrity, partial cell wall hydrolysis and/or other factors which may differ between 

species and may depend on the experimental protocols used.  T. zilligii in exponential 
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phase displays lower buffering capacity per unit wet biomass than any of the 

thermophilic bacteria that have been studied to date, which may be the result of 

differences in the cell wall structure of archaea relative to bacteria, although future 

studies with other archaea are required to test this hypothesis. 

The influence of growth temperature on buffering capacity by microorganisms 

can be summarised by comparing the total proton adsorption occurring for different 

species at a biomass concentration of 1 wet g per litre and over the pH range 4 to 10 

(Figure 4).  The pH range from 4 to 10 is selected for this comparison because it is 

covered by all previous investigations, and exclusion of data from lower and higher 

pH values avoids the possibility that some portion of the buffering observed for some 

species under more acidic or alkaline conditions is the result of cell wall damage or 

the production of exudates (compare Claessens et al., 2004; Fein et al., 2005; 

Claessens et al., 2006).  The previously published SCMs for individual species and 

consortia have been developed from experiments conducted at ionic strength of 0.01 

or 0.1 M, and it is assumed that these differences in ionic strength would have 

relatively little influence on the general trends displayed in Figure 4 (Daughney and 

Fein, 1998; Borrok and Fein, 2005; Borrok et al., 2005, Burnett et al., 2006a).  The 

comparison of buffering capacity depicted in Figure 4 indicates that the three 

previously published universal SCMs for mesophilic bacteria are all comparable (Yee 

and Fein, 2001; Borrok et al., 2005; Johnson et al., 2007), and that the total adsorptive 

capacity per unit biomass of thermophiles as a group is lower than that of mesophiles 

as a group, based on the species and consortia that have been studied to date. 

Universal SCMs have also been developed to describe Cd adsorption by 

mesophilic bacteria (Yee and Fein, 2001; Johnson et al., 2007). Figure 5 displays the 

expected extent of adsorption as a function of pH for a suspension of having 5  10
-5
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M total Cd and a concentration of 1 wet g mesophilic bacteria per litre, based on the 

universal SCM of Yee and Fein (2001) (shaded area represents 1 uncertainty 

bounds).  The SCM of Yee and Fein (2001) was developed from experiments 

conducted at an ionic strength of 0.1 M, but the model curves depicted in Figure 5 are 

extrapolated to an ionic strength of 0.01 M to enable comparison with other studies.  

This extrapolation of the universal SCM from 0.1 M to 0.01 M ionic strength is 

reasonable because whilst Cd adsorption by bacteria is known to be sensitive to 

change in ionic strength over this range 0.01 to 0.5 M (Daughney and Fein 1998; 

Borrok and Fein, 2005), the influence of ionic strength can be predicted with the 

universal SCM because it is likely dominantly related to changes in the aqueous 

activity of Cd and not due to electrostatic effects related to the cell surface charge 

(Borrok and Fein, 2005).  The universal SCM for Cd adsorption by mesophilic 

consortia published by Johnson et al. (2007) yields model curves that are similar to 

those of Yee and Fein (2001).  

Compared to mesophilic bacteria, previously studied thermophiles possess 

relatively low Cd adsorption capacity per unit biomass (Figure 5).  As observed for 

proton adsorption, the model curves for Cd adsorption by thermophilic bacteria fall 

near or just outside the lower 1 bound for mesophiles.  Few previous investigations 

have assessed Cd adsorption as a function of growth phase, and so its possible 

influence cannot be adequately determined.  T. zilligii in exponential phase displays 

lower Cd adsorption capacity per unit biomass than any of the thermophilic bacteria 

that have been studied to date, which mirrors the pattern observed for proton 

adsorption.  The lower Cd adsorption may be the result of differences in the cell wall 

structure of the archaea relative to bacteria, although future studies with other archaea 

are required to test this hypothesis. 
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The influence of growth temperature on Cd adsorption by microorganisms can 

be summarised by comparing the total Cd adsorption that occurs for different species 

at pH 6, ionic strength of 0.01 M, and total concentrations of 5  10
-5

 M Cd and 1 wet 

g wet biomass per litre (Figure 6).  These conditions are selected for the comparison 

because they are typical of the experimental conditions used in most previous studies, 

and hence the previously published SCMs are expected to be valid.  As observed for 

the general comparison of proton adsorption, the comparison of Cd adsorption shown 

in Figure 6 indicates that the two previously published universal SCMs for mesophilic 

bacteria are comparable (Yee and Fein, 2001; Johnson et al., 2007), and that the total 

adsorptive capacity per unit biomass of thermophiles as a group is lower than that of 

mesophiles as a group. Comparisons made for other values of pH or Cd-to-biomass 

concentration ratio yield similar general results. 

 The general result of the analyses described above is that thermophiles have 

lower capacity to adsorb protons and Cd per unit wet biomass when compared to 

mesophiles. It is known that changes in growth temperature may lead to changes in 

cell wall structure and fluidity (e.g. Fernández Murga et al., 2000; Kremer et al., 

2002).  However, it is not possible to use the information presented in Figures 3 to 6 

to detect more subtle variations in adsorptive properties, such as differences in pKa 

values or relative proportions of surface sites, because previous studies have 

employed different SCM frameworks, yielding model parameters that are not directly 

comparable.  We therefore use a consistent three-site non-electrostatic SCM 

framework to re-develop models for the various datasets shown in Figures 3 to 6.  We 

acknowledge that the re-developed three-site non-electrostatic SCMs cannot match all 

types of previously published information, such as electrophoretic mobilities (e.g. 
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Burnett et al., 2006a; Heinrich et al., 2007); the intent here is to limit the comparison 

to the SCM parameters for proton and metal adsorption. 

 Model parameters for the re-developed three-site non-electrostatic SCMs are 

given in Table 3. The Kruskal-Wallis test indicates that there is no difference between 

the mesophiles and thermophiles in terms of pKa values for Site 1 or Site 2 (p > 0.1), 

but the pKa values for Site 3 are significantly lower for the thermophiles (p < 0.05).  

The total concentration of surface sites is significantly less for the thermophiles, 

which is almost entirely due to a lower concentration of Site 1 (p < 0.05).  There are 

no significant differences in log K values for Cd adsorption by thermophiles 

compared to mesophiles (p > 0.1).  Hence, the lesser proton and Cd adsorption to 

thermophiles compared to mesophiles (Figures 3 to 6) appears to derive mainly from 

lower concentrations of Site 1 (i.e. the site with pKa value approximately 4.0), rather 

than differences in the concentrations of other sites or differences in stability 

constants for proton or Cd adsorption.  It must be stressed that the re-developed SCMs 

are used here simply for the basis of comparison of model parameters for proton and 

Cd adsorption between different species and consortia, and not to infer the actual 

reaction mechanisms that may be occurring during adsorption; future spectroscopic 

evidence would be essential for the latter purpose.   

 

4. Conclusions 

 This study extends previous work focussed on mesophilic and thermophilic 

bacteria by assessing proton and metal adsorption by the thermophilic archaeon T. 

zilligii. Proton and metal adsorption by T. zilligii is shown to be rapid and strongly 

dependent on pH and metal-to-biomass concentration ratio, but occurs to a lesser 

extent than for the bacteria that have been studied to date.  The thermophilic bacteria 
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as a group appear to have broadly similar adsorptive characteristics, but generally 

have lower adsorptive capacity per unit biomass compared to the mesophiles. This 

may point to a general pattern of total concentration of cell wall adsorption sites per 

unit biomass being inversely correlated to growth temperature, although further 

studies would be required to confirm this hypothesis. The thermophilic archaeon T. 

zilligii has lower adsorptive capacity per unit biomass than any other thermophile 

studied to date, which may reflect differences in cell wall structure between the 

archaea and bacteria.  This study has also shown that previously published 

electrostatic SCMs can be re-developed effectively using a non-electrostatic 

framework, confirming that it is possible to fit a single dataset with more than one 

SCM configuration. 
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Figure captions 

Figure 1. Acid–base titration data (0.01 M) for T. zilligii. Error bars are smaller than 

symbols. (a) Data from four independently prepared cell suspensions, showing that 

proton adsorption–desorption reactions are reversible and reproducible (symbols of 

the same shape depict replicate up-pH titrations). (b) Data normalized to biomass 

concentration.  Solid line represents the three-site non-electrostatic model generated 

by FITMOD when data from all individual titrations are fitted simultaneously. 

 

Figure 2. Cd adsorption by a single representative T. zilligii cell suspension with 

biomass concentration varied by dilution with the electrolyte (total Cd = 5  10
-5

 M, 

ionic strength = 0.01 M). Error bars represent 2 uncertainties. Solid line represents 

model fit to the experimental data. 

 

Figure 3. Comparison of proton adsorption by thermophiles and mesophiles at ionic 

strength 0.01 M.  Dashed line represents the universal model curve for mesophilic 

bacteria, with shaded area representing ± 1 around the average (Borrok et al., 2005).  

Solid lines show model curves for various thermophiles, labelled by abbreviations at 

right: Tz = Thermococcus zilligii (this study); Gt = Geobacillus thermocatenulatus 

(Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et al., 2006a; Heinrich 

et al., 2007); TOR-39 = a thermophilic bacterium similar to Thermoanarobacter 

ethanolicus (Wightman et al., 2001); Tt = Thermus thermophilus (Ginn and Fein, 

2008); Gs = Geobacillus stearothermophilus (Heinrich et al., 2008). * denotes model 

curves for populations in exponential phase. 

 

Figure 4. Total proton buffering capacity as a function of growth temperature for 

different species over the pH range 4 to 10, at biomass concentration of 1 wet g per 

litre and ionic strength 0.01.  Data points are labelled as follows: Univ-J, Univ-B and 

Univ-Y represent universal models for mesophilic bacteria and consortia, with ± 1 

around the average, based on Johnson et al. (2007), Borrok et al. (2005) and Yee and 

Fein (2001), respectively; Tz = Thermococcus zilligii (this study); Gt = Geobacillus 

thermocatenulatus (Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et 

al., 2006a; Heinrich et al., 2007); TOR-39 = a thermophilic bacterium similar to 

Thermoanarobacter ethanolicus (Wightman et al., 2001); Tt = Thermus thermophilus 

(Ginn and Fein, 2008); Gs = Geobacillus stearothermophilus (Heinrich et al., 2008). * 

denotes populations in exponential phase. 

 

Figure 5. Comparison of Cd adsorption by thermophiles and mesophiles for biomass 

concentration of 1 wet g per litre, total Cd concentration of 5  10
-5

 M and ionic 

strength 0.01 M.  Dashed line represents the universal model curve for mesophilic 

bacteria, with shaded area representing ± 1 around the average (Yee and Fein, 2001).  

Solid lines show model curves for various thermophiles, labelled by abbreviations at 

right: Tz = Thermococcus zilligii (this study); Gt = Geobacillus thermocatenulatus 

(Hetzer et al., 2006); Tt = Thermus thermophilus (Ginn and Fein, 2008); Gs = 

Geobacillus stearothermophilus (Hetzer et al., 2006); Af = Anoxybacillus 

flavithermus (Burnett et al., 2006b). * denotes model curves for populations in 

exponential phase. 

 

Figure 6. Total Cd adsorption as a function of growth temperature for different 

species at pH 6, biomass concentration of 1 wet g per litre, total Cd concentration of 5 
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 10
-5

 M and ionic strength 0.01 M.  Data points are labelled as follows: Univ-J and 

Univ-Y represent universal models for mesophilic bacteria and consortia, with ± 1 

around the average, based on Johnson et al. (2007) and Yee and Fein (2001), 

respectively; Tz = Thermococcus zilligii (this study); Gt = Geobacillus 

thermocatenulatus (Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et 

al., 2006b); Gs = Geobacillus stearothermophilus (Hetzer et al., 2006); Tt = Thermus 

thermophilus (Ginn and Fein, 2008);. * denotes populations in exponential phase. 
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Table 1. Parameters for non-electrostatic surface complexation models describing acid–base titrations of T. zilligii. 1 

Trial
a
 n

b
 Model 

pKa values
c
 Site Concentrations

d
 Model Fit

e
 

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Total V(Y) Lower Upper 

1 93 two-site 5.04 8.51 - - 2.81 2.76 - - 5.57 27.6 21.0 38.0 

  three-site 4.86 6.84 9.13 - 2.51 0.98 3.10 - 6.58 20.7 15.7 28.6 

  four-site 4.82 6.48 8.27 9.82 1.83 0.60 0.85 3.16 6.44 20.3 15.4 28.1 

2 74 two-site 4.86 8.11 - - 3.49 2.30 - - 5.79 14.1 10.4 20.4 

  three-site 4.46 6.12 8.94 - 0.89 0.57 0.77 - 2.23 6.8 5.0 9.8 

  four-site ----------------------------------------------  No convergence  ---------------------------------------------- 

3 94 two-site 4.77 7.67 - - 3.47 1.51 - - 4.99 11.4 8.7 15.7 

  three-site ----------------------------------------------  No convergence  ---------------------------------------------- 

  four-site ----------------------------------------------  No convergence  ---------------------------------------------- 

4 97 two-site 4.79 7.68 - - 2.85 1.65 - - 4.50 9.0 6.9 12.3 

  three-site 4.54 6.28 8.86 - 1.65 0.86 1.09 - 3.60 4.6 3.5 6.3 

  four-site ----------------------------------------------  No convergence  ---------------------------------------------- 

All 358 two-site 4.95 8.17   3.05 1.95   5.00 20.5 17.8 23.9 

  three-site 4.60 6.26 8.96  2.50 1.30 2.09  5.89 13.6 11.8 15.8 

  four-site 4.47 5.78 7.74 9.73 2.21 1.35 0.86 3.06 7.48 12.7 11.0 14.8 
 

2 
a
 Trials 1 to 4 pertain to individually cultured cell suspensions that were modelled independently.  All describes the model simultaneously fit to 3 

data from the four individual trials. 4 
b
 Number of data points in each dataset. Trials 1 to 4 involve titrations of two independent aliquots of cell suspension, each of which was titrated 5 

twice in the up-pH direction. 6 
c
 Negative logarithm of stability constants for deprotonation of surface sites (Equations 1 and 3), referenced to zero ionic strength and 25°C. 7 

d
 Concentrations of surface sites in 10

-5
 moles per gram wet biomass. 8 

e
 V(Y) is the variance calculated by FITMOD; Lower and Upper represent 95% confidence intervals (Equation 6). 9 
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Table 2. Parameters for three-site non-electrostatic surface complexation models describing adsorption of Cd by T. zilligii. 10 

Trial
a
 n

b
 

Log K values
c
 Model Fit

d
 

Site 1 Site 2 Site 3 V(Y) Lower Upper 

1 22 4.10 - - 2.2 1.3 4.4 

  - 4.60 - 9.8 5.8 20.0 

  - - 5.69 19.2 11.3 39.1 

2 27 3.91 - - 5.5 3.4 10.3 

  - 4.42 - 16.0 9.9 30.0 

  - - 5.56 26.7 16.5 50.0 

3 28 3.87 - - 3.3 2.1 6.1 

  - 4.37 - 15.2 9.5 28.1 

  - - 5.71 29.8 18.6 55.2 

4 25 4.04 - - 4.3 2.6 8.3 

  - 4.73 - 10.0 6.1 19.4 

  - - 6.74 15.9 9.7 30.7 

All 102 3.95 - - 4.3 3.3 5.8 

  - 4.52 - 13.3 10.3 17.9 

  - - 6.13 25.1 19.4 33.7 
 

11 
a
 Trials 1 to 4 pertain to individually cultured cell suspensions that were modelled independently.  All describes the model simultaneously fit to 12 

data from the four individual trials. 13 
b
 Number of data points in each dataset.  14 

c
 Log K values describing adsorption of Cd onto one of the three types of surface sites incorporated into the model (Equations 2 and 4). Sites 15 

have pKa values and concentrations as specified by the three-site “All” model in Table 1. Models that consider Cd adsorption onto any 16 

combination of two or three different types of surface sites fail to converge. 17 
d
 V(Y) is the variance calculated by FITMOD; Lower and Upper represent 95% confidence intervals (Equation 6). 18 
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Table 3. Three-site non-electrostatic models (Equations 1 to 4) fitted to data from previous investigations. 19 

 
Reference Species

a
 °C

b
 

pKa values Site Concentrations Cd log K values 

 Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 Total Site 1 Site 2 Site 3 

T
h

e
rm

o
p

h
ili

e
s
 

This study Thermococcus zilligii* 75 4.60 6.26 8.96 2.50 1.30 2.09 5.89 3.95 - - 

Wightman et al. (2001) TOR-39  55 4.59 5.95 8.42 6.04 4.93 3.08 14.05 - - - 

Burnett et al. (2006a,b) Anoxybacillus flavithermus 60 4.77 6.10 8.13 5.05 3.66 3.86 12.56 3.12 3.49 6.08 

Heinrich et al. (2007) Anoxybacillus flavithermus* 57 3.03 5.25 8.07 9.51 16.12 7.13 32.76 - - - 

Heinrich et al. (2008) Geobacillus stearothermophilus 57 3.15 5.92 7.04 2.54 4.13 8.19 14.86 - - - 

Heinrich et al. (2008) Geobacillus stearothermophilus* 57 2.31 4.34 6.88 19.21 17.85 12.76 49.82 - - - 

Hetzer et al. (2007) Geobacillus thermocatenulatus 60 4.12 5.47 8.09 3.27 6.27 2.42 11.96 3.72 3.96 4.34 

Ginn and Fein (2008) Thermus thermophilus 80 3.75 5.73 8.81 11.18 4.47 3.08 18.73 2.72 3.78 5.23 

M
e

s
o

p
h

ile
s
 

Borrok et al. (2005) Universal, 36 species/consortia 37 3.72 5.90 8.74 16.68 7.64 7.05 31.37 - - - 

 Universal - 1 37 4.06 6.23 8.83 8.14 3.97 3.69 15.79 - - - 

 Universal + 1 37 3.59 5.77 8.69 25.11 11.45 10.34 46.90 - - - 

Johnson et al. (2007) Universal, 3 consortia 25 3.85 5.76 8.99 17.14 10.76 9.79 37.69 3.25 3.97 5.73 

 Universal - 1 25 3.95 5.86 9.02 13.71 8.31 7.76 29.78 2.89 3.67 4.80 

 Universal + 1 25 3.77 5.70 8.97 20.51 13.25 11.82 45.58 3.45 4.09 6.01 

Yee and Fein (2001) Universal, 9 species 32 5.12 7.38 10.44 18.77 8.63 46.28 73.68 4.05 4.56 4.96 

 Universal - 1 32 5.11 7.36 11.38 11.65 4.72 48.61 64.98 3.70 3.75 5.18 

 Universal + 1 32 5.13 7.36 10.15 25.58 12.66 34.46 72.70 4.31 5.48 4.14 
 

20 
a
 Individual species for thermophiles (* denotes populations in exponential phase; all other populations are in stationary/death phase, or growth 21 

phase was not reported). Individual “universal” models for mesophiles are re-developed for the average, the average - 1 standard deviation, and 22 

the average +  1 standard deviation, based on uncertainties reported in previous studies. 23 
b
 Growth temperature. 24 
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Figure 1. Acid–base titration data (0.01 M) for T. zilligii. Error bars are smaller than 25 

symbols. (a) Data from four independently prepared cell suspensions, showing that 26 

proton adsorption–desorption reactions are reversible and reproducible (symbols of 27 

the same shape depict replicate up-pH titrations). (b) Data normalized to biomass 28 

concentration.  Solid line represents the three-site non-electrostatic model generated 29 

by FITMOD when data from all individual titrations are fitted simultaneously. 30 
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 38 

Figure 2. Cd adsorption by a single representative T. zilligii cell suspension with 37 

biomass concentration varied by dilution with the electrolyte (total Cd = 5  10
-5

 M, 38 

ionic strength = 0.01 M). Error bars represent 2 uncertainties. Solid line represents 39 

model fit to the experimental data. 40 
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 39 

Figure 3. Comparison of proton adsorption by thermophiles and mesophiles at ionic 45 

strength 0.01 M.  Dashed line represents the universal model curve for mesophilic 46 

bacteria, with shaded area representing ± 1 around the average (Borrok et al., 2005).  47 

Solid lines show model curves for various thermophiles, labelled by abbreviations at 48 

right: Tz = Thermococcus zilligii (this study); Gt = Geobacillus thermocatenulatus 49 

(Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et al., 2006a; Heinrich 50 

et al., 2007); TOR-39 = a thermophilic bacterium similar to Thermoanarobacter 51 

ethanolicus (Wightman et al., 2001); Tt = Thermus thermophilus (Ginn and Fein, 52 

2008); Gs = Geobacillus stearothermophilus (Heinrich et al., 2008). * denotes model 53 

curves for populations in exponential phase. 54 
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 40 

Figure 4. Total proton buffering capacity as a function of growth temperature for 58 

different species over the pH range 4 to 10, at biomass concentration of 1 wet g per 59 

litre and ionic strength 0.01.  Data points are labelled as follows: Univ-J, Univ-B and 60 

Univ-Y represent universal models for mesophilic bacteria and consortia, with ± 1 61 

around the average, based on Johnson et al. (2007), Borrok et al. (2005) and Yee and 62 

Fein (2001), respectively; Tz = Thermococcus zilligii (this study); Gt = Geobacillus 63 

thermocatenulatus (Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et 64 

al., 2006a; Heinrich et al., 2007); TOR-39 = a thermophilic bacterium similar to 65 

Thermoanarobacter ethanolicus (Wightman et al., 2001); Tt = Thermus thermophilus 66 

(Ginn and Fein, 2008); Gs = Geobacillus stearothermophilus (Heinrich et al., 2008). * 67 

denotes populations in exponential phase. 68 
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Figure 5. Comparison of Cd adsorption by thermophiles and mesophiles for biomass 73 

concentration of 1 wet g per litre, total Cd concentration of 5  10
-5

 M and ionic 74 

strength 0.01 M.  Dashed line represents the universal model curve for mesophilic 75 

bacteria, with shaded area representing ± 1 around the average (Yee and Fein, 2001).  76 

Solid lines show model curves for various thermophiles, labelled by abbreviations at 77 

right: Tz = Thermococcus zilligii (this study); Gt = Geobacillus thermocatenulatus 78 

(Hetzer et al., 2006); Tt = Thermus thermophilus (Ginn and Fein, 2008); Gs = 79 

Geobacillus stearothermophilus (Hetzer et al., 2006); Af = Anoxybacillus 80 

flavithermus (Burnett et al., 2006b). * denotes model curves for populations in 81 

exponential phase. 82 
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Figure 6. Total Cd adsorption as a function of growth temperature for different 86 

species at pH 6, biomass concentration of 1 wet g per litre, total Cd concentration of 5 87 

 10
-5

 M and ionic strength 0.01 M.  Data points are labelled as follows: Univ-J and 88 

Univ-Y represent universal models for mesophilic bacteria and consortia, with ± 1 89 

around the average, based on Johnson et al. (2007) and Yee and Fein (2001), 90 

respectively; Tz = Thermococcus zilligii (this study); Gt = Geobacillus 91 

thermocatenulatus (Hetzer et al., 2006); Af = Anoxybacillus flavithermus (Burnett et 92 

al., 2006b); Gs = Geobacillus stearothermophilus (Hetzer et al., 2006); Tt = Thermus 93 

thermophilus (Ginn and Fein, 2008);. * denotes populations in exponential phase. 94 
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