15,193 research outputs found

    Possibility of a Metallic Field-Effect Transistor

    Full text link
    We develop theoretical arguments that demonstrate the possibility of metallic field-effect transistors (METFET's) in one-dimensional systems and particularly in armchair carbon nanotubes. A very inhomogeneous electric field, such as the field of a tunnelling tip, can penetrate the relatively weakly screened nanotubes and open an energy gap. As a consequence, an energy barrier forms that impedes electron flow and thus permits transistor action. This type of metallic field effect is advantageous because of the high conductance of the metallic tubes in the ON--state.Comment: version from 1/11/0

    A New Model of Chemical Bonding in Ionic Melts

    Full text link
    We developed a new physical model to predict macroscopic properties of inorganic molten systems using a realistic description of inter-atomic interactions. Unlike the conventional approach, which tends to overestimate viscosity by several times, our systems consist of a set of ions with an admixture of neutral atoms. The neutral atom subsystem is a consequence of the covalent/ionic state reduction, occurring in the liquid phase. Comparison of the calculated macroscopic properties (shear viscosity and self-diffusion constants) with the experiment demonstrates good performance of our model. The presented approach is inspired by a significant degree of covalent interaction between the alkali and chlorine atoms, predicted by the coupled cluster theory

    Tunable high pressure lasers

    Get PDF
    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers

    Lyapunov instabilities in lattices of interacting classical spins at infinite temperature

    Full text link
    We numerically investigate Lyapunov instabilities for one-, two- and three-dimensional lattices of interacting classical spins at infinite temperature. We obtain the largest Lyapunov exponents for a very large variety of nearest-neighbor spin-spin interactions and complete Lyapunov spectra in a few selected cases. We investigate the dependence of the largest Lyapunov exponents and whole Lyapunov spectra on the lattice size and find that both quickly become size-independent. Finally, we analyze the dependence of the largest Lyapunov exponents on the anisotropy of spin-spin interaction with the particular focus on the difference between bipartite and nonbipartite lattices

    A shipboard cable-hauling system for large electrical cables

    Get PDF
    An air -powered hauling machine and reeling device for use at sea with large electrical cable systems such as hydrophone arrays is described. The system may be used to haul cables from 0. 3 to 2 . 0 inch diameter. Hauling tensions up to 9 80 lbs . and speeds up to 4 30 ft/ min. are provided. The principal advantage of the system is that it does not cause the cable to bend while under tension. Reeling is accomplished under only sufficient tension to cause the cable to conform to the reel.Undersea Warfare Branch Office of Naval Research under Contracts Nonr-4029(00) NR 260-10

    Current activities at IITRI on high- temperature protective coatings

    Get PDF
    Heat resistant protective coatings for use in liquid propellant rocket engine

    Passive propellant system

    Get PDF
    The system utilizes a spherical tank structure A separated into two equal volume compartments by a flat bulkhead B. Each compartment has four similar gallery channel legs located in the principal vehicle axes, ensuring that bulk propellant will contact at least one gallery leg during vehicle maneuvers. The forward compartment gallery channel legs collect propellant and feed it into the aft compartment through communication screens which protrude into the aft compartment. The propellant is then collected by the screened gallery channels in the aft compartment and supplied to the propellant outlet. The invention resides in the independent gallery assembly and screen structure by means of which propellant flow from forward to aft compartments is maintained. Liquid surface tension of the liquid on the screens is used to control liquid flow. The system provides gas-free propellants in low or zero-g environments regardless of axial accelerations and propellant orientation in bulk regions of the vessel

    Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    Get PDF
    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2lasers

    Get PDF
    A parametric analysis of DIAL sensitivity with heterodyne detection is presented and comparisons with direct detection are discussed. Examples are given for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system. Results indicate that maximum sensitivity at minimum laser energy per measurement requires multiple pulse operation with the energy per pulse selected so that the measured photon rate is approximately equal to the detector IF bandwidth. Measurement sensitivities can be maximized and interference effects minimized by fine adjustment of measurement frequencies using the tunability of high pressure lasers. The use of rare isotope lasers minimizes loss due to CO2 atmospheric absorption
    corecore