1,971 research outputs found

    Have we underestimated the likelihood and severity of zero lower bound events?

    Get PDF
    Before the recent recession, the consensus among researchers was that the zero lower bound (ZLB) probably would not pose a significant problem for monetary policy as long as a central bank aimed for an inflation rate of about 2 percent; some have even argued that an appreciably lower target inflation rate would pose no problems. This paper reexamines this consensus in the wake of the financial crisis, which has seen policy rates at their effective lower bound for more than two years in the United States and Japan and near zero in many other countries. We conduct our analysis using a set of structural and time series statistical models. We find that the decline in economic activity and interest rates in the United States has generally been well outside forecast confidence bands of many empirical macroeconomic models. In contrast, the decline in inflation has been less surprising. We identify a number of factors that help to account for the degree to which models were surprised by recent events. First, uncertainty about model parameters and latent variables, which were typically ignored in past research, significantly increases the probability of hitting the ZLB. Second, models that are based primarily on the Great Moderation period severely understate the incidence and severity of ZLB events. Third, the propagation mechanisms and shocks embedded in standard DSGE models appear to be insufficient to generate sustained periods of policy being stuck at the ZLB, such as we now observe. We conclude that past estimates of the incidence and effects of the ZLB were too low and suggest a need for a general reexamination of the empirical adequacy of standard models. In addition to this statistical analysis, we show that the ZLB probably had a first-order impact on macroeconomic outcomes in the United States. Finally, we analyze the use of asset purchases as an alternative monetary policy tool when short-term interest rates are constrained by the ZLB, and find that the Federal Reserve's asset purchases have been effective at mitigating the economic costs of the ZLB. In particular, model simulations indicate that the past and projected expansion of the Federal Reserve's securities holdings since late 2008 will lower the unemployment rate, relative to what it would have been absent the purchases, by 1-1/2 percentage points by 2012. In addition, we find that the asset purchases have probably prevented the U.S. economy from falling into deflation.Inflation (Finance) ; Interest rates ; Macroeconomics - Econometric models

    Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury

    Get PDF
    Umbilical cord blood (UCB) represents a readily available source of hematopoietic and endothelial precursors at early ontogeny. Understanding the proangiogenic functions of these somatic progenitor subtypes after transplantation is integral to the development of improved cell-based therapies to treat ischemic diseases. We used fluorescence-activated cell sorting to purify a rare (\u3c0.5%) population of UCB cells with high aldehyde dehydrogenase (ALDHhi) activity, a conserved stem/progenitor cell function. ALDHhicells were depleted of mature monocytes and T- and B-lymphocytes and were enriched for early myeloid (CD33) and stem cell-associated (CD34, CD133, and CD117) phenotypes. Although these cells were primarily hematopoietic in origin, UCB ALDHhi cells demonstrated a proangiogenic transcription profile and were highly enriched for both multipotent myeloid and endothelial colony-forming cells in vitro. Coculture of ALDHhi cells in hanging transwells promoted the survival of human umbilical vein endothelial cells (HUVEC) under growth factor-free and serum-free conditions. On growth factor depleted matrigel, ALDHhicells significantly increased tube-like cord formation by HUVEC. After induction of acute unilateral hind limb ischemia by femoral artery ligation, transplantation of ALDHhi cells significantly enhanced the recovery of perfusion in ischemic limbs. Despite transient engraftment in the ischemic hind limb, early recruitment of ALDHhi cells into ischemic muscle tissue correlated with increased murine von Willebrand factor blood vessel and CD31+ capillary densities. Thus, UCB ALDHhi cells represent a readily available population of proangiogenic progenitors that promote vascular regeneration. This work provides preclinical justification for the development of therapeutic strategies to treat ischemic diseases using UCB-derived ALDH hi mixed progenitor cells. © AlphaMed Press

    When grassroots innovation movements encounter mainstream institutions: implications for models of inclusive innovation

    Get PDF
    Grassroots innovation movements (GIMs) can be regarded as initiators or advocates of alternative pathways of innovation. Sometimes these movements engage with more established science, technology and innovation (STI) institutions and development agencies in pursuit of their goals. In this paper, we argue that an important aspect to encounters between GIMs and mainstream STI institutions is the negotiation of different framings of grassroots innovation and development of policy models for inclusive innovation. These encounters can result in two different modes of engagement by GIMs; what we call insertion and mobilization. We illustrate and discuss these interrelated notions of framings and modes of engagement by drawing on three case studies of GIMs: the Social Technologies Network in Brazil, and the Honey Bee Network and People's Science Movements in India. The cases highlight that inclusion in the context of GIMs is not an unproblematic, smooth endeavour, and involves diverse interpretations and framings, which shape what and who gets included or excluded. Within the context of increasing policy interest, the analysis of encounters between GIMs and STI institutions can offer important lessons for the design of models of inclusive innovation and development

    Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies

    Get PDF
    Critical limb ischemia (CLI), the most severe form of peripheral artery disease, is characterized by pain at rest and non-healing ulcers in the lower extremities. For patients with CLI, where the extent of atherosclerotic artery occlusion is too severe for surgical bypass or percutaneous interventions, limb amputation remains the only treatment option. Thus, cell-based therapy to restore perfusion and promote wound healing in patients with CLI is under intense investigation. Despite promising preclinical studies in animal models, transplantation of bone marrow (BM)-derived cell populations in patients with CLI has shown limited benefit preventing limb amputation. Early trials injected heterogenous mononuclear cells containing a low frequency of cells with pro-vascular regenerative functions. Most trials transferred autologous cells damaged by chronic disease that demonstrated poor survival in the ischemic environment and impaired function conferred by atherosclerotic or diabetic co-morbidities. Finally, recent preclinical studies suggest optimized blood vessel formation may require paracrine and/or structural contributions from multiple progenitor cell lineages, angiocrine-secretory myeloid cells derived from hematopoietic progenitor cells, tubule-forming endothelial cells generated by circulating or vessel-resident endothelial precursors, and vessel-stabilizing perivascular cells derived from mesenchymal stem cells. Understanding how stem cells co-ordinate the myriad of cells and signals required for stable revascularization remains the key to translating the potential of stem cells into curative therapies for CLI. Thus, combination delivery of multiple cell types within supportive bioengineered matricies may represent a new direction to improve cell therapy strategies for CLI. Stem Cells 2018;36:161–171

    Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke

    Get PDF
    BACKGROUND: Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are increased in the brain after experimental ischemic stroke in rats. These two proteases are involved with the degradation of the basal lamina and loss of stability of the blood brain barrier that occurs after ischemia and that is associated with thrombolytic therapy in ischemic stroke. Minocycline is a lipophilic tetracycline and is neuroprotective in several models of brain injury. Minocycline inhibits inflammation, apoptosis and extracellular matrix degradation. In this study we investigated whether delayed minocycline inhibits brain MMPs activated by ischemia in a model of temporary occlusion in Wistar rats. RESULTS: Both MMP-2 and MMP-9 were elevated in the ischemic tissue as compared to the contra-lateral hemisphere after 3 hours occlusion and 21 hours survival (p < 0.0001 for MMP-9). Intraperitoneal minocycline at 45 mg/kg concentration twice a day (first dose immediately after the onset of reperfusion) significantly reduced gelatinolytic activity of ischemia-elevated MMP-2 and MMP-9 (p < 0.0003). Treatment also reduced protein concentration of both enzymes (p < 0.038 for MMP-9 and p < 0.018 for MMP-2). In vitro incubation of minocycline in concentrations as low as 0.1 μg/ml with recombinant MMP-2 and MMP-9 impaired enzymatic activity and MMP-9 was more sensitive at lower minocycline concentrations (p < 0.05). CONCLUSION: Minocycline inhibits enzymatic activity of gelatin proteases activated by ischemia after experimental stroke and is likely to be selective for MMP-9 at low doses. Minocycline is a potential new therapeutic agent to acute treatment of ischemic stroke

    Degradation of the Deubiquitinating Enzyme USP33 is Mediated by p97 and the Ubiquitin Ligase HERC2

    Get PDF
    Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (β-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT-domain-containing E3 ligase, as responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for post-ubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system

    Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats

    Get PDF
    BACKGROUND: Minocycline, a semi-synthetic tetracycline antibiotic, is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally. The aim of this study was to determine if minocycline was effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO) when given at lower intravenous (IV) doses that correspond to human clinical exposure regimens. METHODS: Rats underwent 90 minutes of TMCAO. Minocycline or saline placebo was administered IV starting at 4, 5, or 6 hours post TMCAO. Infarct volume and neurofunctional tests were carried out at 24 hr after TMCAO using 2,3,5-triphenyltetrazolium chloride (TTC) brain staining and Neurological Score evaluation. Pharmacokinetic studies and hemodynamic monitoring were performed on minocycline-treated rats. RESULTS: Minocycline at doses of 3 mg/kg and 10 mg/kg IV was effective at reducing infarct size when administered at 4 hours post TMCAO. At doses of 3 mg/kg, minocycline reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56%. Minocycline at a dose of 10 mg/kg significantly reduced infarct size at 5 hours by 40% and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction. There was a significant difference in neurological scores favoring minocycline in both the 3 mg/kg and 10 mg/kg doses at 4 hours and at the 10 mg/kg dose at 5 hours. Minocycline did not significantly affect hemodynamic and physiological variables. A 3 mg/kg IV dose of minocycline resulted in serum levels similar to that achieved in humans after a standard 200 mg dose. CONCLUSIONS: The neuroprotective action of minocycline at clinically suitable dosing regimens and at a therapeutic time window of at least 4–5 hours merits consideration of phase I trials in humans in view of developing this drug for treatment of stroke
    corecore