13,615 research outputs found

    Active Bayesian perception and reinforcement learning

    Get PDF
    In a series of papers, we have formalized an active Bayesian perception approach for robotics based on recent progress in understanding animal perception. However, an issue for applied robot perception is how to tune this method to a task, using: (i) a belief threshold that adjusts the speed-accuracy tradeoff; and (ii) an active control strategy for relocating the sensor e.g. to a preset fixation point. Here we propose that these two variables should be learnt by reinforcement from a reward signal evaluating the decision outcome. We test this claim with a biomimetic fingertip that senses surface curvature under uncertainty about contact location. Appropriate formulation of the problem allows use of multi-armed bandit methods to optimize the threshold and fixation point of the active perception. In consequence, the system learns to balance speed versus accuracy and sets the fixation point to optimize both quantities. Although we consider one example in robot touch, we expect that the underlying principles have general applicability

    A combined Adaptive Neuro-Fuzzy and Bayesian strategy for recognition and prediction of gait events using wearable sensors

    Get PDF
    A robust strategy for recognition and prediction of gait events using wearable sensors is presented in this paper. The strategy adopted here uses a combination of two computational intelligence approaches: Adaptive Neuro-Fuzzy and Bayesian methods. Recognition of gait events is performed by a Bayesian method which iteratively accumulates evidence to reduce uncertainty from sensor measurements. Prediction of gait events is based on the observation of decisions and actions made over time by our perception system. An Adaptive Neuro-Fuzzy system evaluates the reliability of predictions, learns a weighting parameter and controls the amount of predicted information to be used by our Bayesian method. Thus, this strategy ensures the achievement of better recognition and prediction performance in both accuracy and speed. The methods are validated with experiments for recognition and prediction of gait events with different walking activities, using data from wearable sensors attached to lower limbs of participants. Overall, results show the benefits of our combined Adaptive Neuro-Fuzzy and Bayesian strategy to achieve fast and accurate decisions, but also to evaluate and adapt its own performance, making it suitable for the development of intelligent assistive and rehabilitation robots

    Active contour following to explore object shape with robot touch

    Get PDF
    In this work, we present an active tactile perception approach for contour following based on a probabilistic framework. Tactile data were collected using a biomimetic fingertip sensor. We propose a control architecture that implements a perception-action cycle for the exploratory procedure, which allows the fingertip to react to tactile contact whilst regulating the applied contact force. In addition' the fingertip is actively repositioned to an optimal position to ensure accurate perception. The method is trained off-line and then the testing performed on-line based on contour following around several different test shapes. We then implement object recognition based on the extracted shapes. Our active approach is compared with a passive approach, demonstrating that active perception is necessary for successful contour following and hence shape recognition

    Embodied hyperacuity from Bayesian perception: Shape and position discrimination with an iCub fingertip sensor

    Get PDF
    Recent advances in modeling animal perception has motivated an approach of Bayesian perception applied to biomimetic robots. This study presents an initial application of Bayesian perception on an iCub fingertip sensor mounted on a dedicated positioning robot. We systematically probed the test system with five cylindrical stimuli offset by a range of positions relative to the fingertip. Testing the real-time speed and accuracy of shape and position discrimination, we achieved sub-millimeter accuracy with just a few taps. This result is apparently the first explicit demonstration of perceptual hyperacuity in robot touch, in that object positions are perceived more accurately than the taxel spacing. We also found substantial performance gains when the fingertip can reposition itself to avoid poor perceptual locations, which indicates that improved robot perception could mimic active perception in animals

    Distribution of basement membrane antigens in glomeruli of mice with autoimmune glomerulonephritis.

    Full text link
    peer reviewedGlomerulonephritis was induced in mice by the repeated injection of human glomeruli or purified glomerular basement membrane. The glomerular basement membranes of nephritic animals were observed to develop subepithelial extensions, "spikes." Although normally Type IV collagen is found throughout the full thickness of basement membranes, the "spikes" reacted with antibodies to laminin but not with antibodies to Type IV collagen. It is proposed that in murine autoimmune glomerulonephritis, the visceral epithelial cells produce an excess of laminin
    • …
    corecore