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A combined Adaptive Neuro-Fuzzy and Bayesian strategy

for recognition and prediction of gait events using wearable sensors

Uriel Martinez-Hernandez, Adrian Rubio-Solis, George Panoutsos and Abbas A. Dehghani-Sanij

Abstract— A robust strategy for recognition and prediction
of gait events using wearable sensors is presented in this
paper. The strategy adopted here uses a combination of two
computational intelligence approaches: Adaptive Neuro-Fuzzy
and Bayesian methods. Recognition of gait events is performed
by a Bayesian method which iteratively accumulates evidence
to reduce uncertainty from sensor measurements. Prediction
of gait events is based on the observation of decisions and
actions made over time by our perception system. An Adaptive
Neuro-Fuzzy system evaluates the reliability of predictions,
learns a weighting parameter and controls the amount of
predicted information to be used by our Bayesian method. Thus,
this strategy ensures the achievement of better recognition
and prediction performance in both accuracy and speed. The
methods are validated with experiments for recognition and
prediction of gait events with different walking activities,
using data from wearable sensors attached to lower limbs of
participants. Overall, results show the benefits of our combined
Adaptive Neuro-Fuzzy and Bayesian strategy to achieve fast
and accurate decisions, but also to evaluate and adapt its
own performance, making it suitable for the development of
intelligent assistive and rehabilitation robots.

I. INTRODUCTION

Robust autonomous systems, capable to understand hu-

man motion to provide safe and appropriate assistance,

require methods for recognition of activities of daily living

(ADL) [1], [2]. Walking, ramp ascent and descent activities

are of particular importance, because they provide humans

with independence of living and transportation to different

locations across various terrains and environments [3], [4].

However, these activities require coordinated movements that

become difficult to execute by elder people [5].

In recent years sensor technology and computational in-

telligence methods, needed to achieve robust and reliable

human motion analysis, have shown rapid progress. Specif-

ically, large progress has been observed in wearable sensors

–for instance, lightweight and fast inertial measurement units

(IMUs) and soft kinematic sensors [6], [7], [8]. In contrast,

the deployment of computational methods that permit to per-

form fast and accurate human motion analysis, recognition

of walking activities and prediction of gait events are still

under development [9], [10], [11].
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Fig. 1. Combined Adaptive Neuro-Fuzzy and Bayesian strategy for
recognition and prediction of gait events in multiple walking activities.

In this work, we present a novel strategy for recognition

and prediction of gait events, that combines two computa-

tional intelligence approaches: Adaptive Neuro-Fuzzy and

Bayesian methods (Figure 1). This strategy extends our

previous work for recognition of walking activities [12].

First, recognition of gait events is performed with a Bayesian

method that has demonstrated to be robust with different

applications [13], [14]. Second, prediction of gait events is

based on the observation of decisions and actions made over

time [15], [16], [17], which is motivated by the way in that

humans make predictions according to the changes observed

from their surrounding environment [18], [19]. An Adadptive

Neuro-Fuzzy system is used to learn a weighting parameter,

to control the amount of predicted information to be used

by our Bayesian approach. Adaptive Neuro-Fuzzy systems

have demonstrated to be a robust tool for fast learning and

control in a large number of applications [20], [21], [22],

[23]. Thus, a combination of both Adaptive Neuro-Fuzzy

and Bayesian approaches, provides a reliable system that

autonomously evaluates its performance to adapt to changes

from the environment, and achieve better recognition and

prediction results in accuracy and speed.

Our methods are implemented in a layered architecture

composed of physical, perception and prediction layers.

These architectures have shown to be a better approach

for the development of modular, autonomous and scalable

robotic systems [24]. We use this architecture to validate the

performance of our method with experiments for recognition

and prediction of eight gait events (initial contact, loading



response, mid stance, terminal stance, pre-swing, initial

swing, mid swing, terminal swing) from multiple walking

activities. For these experiments we employed data collected

from multiple human participants wearing three inertial

measurement unit sensors, attached to their lower limbs and

performing three different walking activities. Results from

our experiments demonstrate the capability of our proposed

strategy to both, recognise and predict gait events with high

accuracy and small decision time from ADLs.

Overall, our combined Adaptive Neuro-Fuzzy and

Bayesian strategy is robust, accurate and fast, which makes

it suitable for wearable robots to provide safe and reliable

assistance to humans in their activities of daily living.

II. METHODS

A. Experimental protocol and data collection

For our investigation we used angular velocity data from

multiple IMU sensors worn by twelve healthy human partic-

ipants. Anthropometric data from participants are as follows:

ages between 24 and 34 years old, heights between 1.70 m

and 1.82 m, and weights between 75.5 kg and 88 kg.

Data from IMU sensors were systematically collected

from each participant to train and test our proposed method.

We employed three IMUs (Shimmer Inc.) attached to the

thigh, shank and foot of participants. We also used two foot

pressure insoles sensors to detect the beginning and end of

each gait cycle. A sampling rate of 100 Hz was used for data

collection from these sensors attached to the human body.

Both wearable devices, IMU and foot pressure sensors, pro-

vide a lightweight and low cost platform for the investigation

and development of human-robot interaction, assistive and

rehabilitation robotic systems [25], [26]. Figure 2A shows

the sensors used for systematic data collection.

Participants were asked to walk normally at their self-

selected walking speed. Here, we asked the participants to

perform ten repetitions of three different walking activities;

level-ground walking, ramp ascent and ramp descent. Level-

ground walking was performed on a flat cement surface (see

Figure 2B). Both ramp ascent and descent were performed

on a metallic ramp with a slope of 8.5 deg (see Figure 2C).

The signals collected were processed by a second-order

Butterworth filter with a cut-off frequency of 10 Hz. Fig-

ures 3A,B,C show the angular velocities from lower limbs

for level-ground walking (black colour curves), ramp ascent

(blue colour curves) and ramp descent (green colour curves).

Solid and dashed lines represent mean angular velocities and

standard deviations respectively. We divided the gait cycle for

each walking activity into stance and swing phases, and eight

events (initial contact, loading response, mid stance, terminal

stance, pre-swing, initial swing, mid swing, terminal swing)

as shown in Figure 3D. The segmentation of the gait cycle,

together with our proposed strategy presented in Section II-

B, allows to recognise and predict the state of the human

body during a walking activity.

intertial measurement unit pressure sensor

(A) Wearable sensors for systematic data collection

(B) Level-ground walking (C) Ramp ascent/descent

Fig. 2. Human performing walking activities using wearable sensors.
(A) IMU and pressure sensors used for data collection. (B) Level-ground
walking on a flat cement surface. (C) Ramp ascent and descent on a ramp
with a slope of 8.5 deg. Participants repeated ten times each walking activity.

B. Bayesian perception system

In this work we have extended our method for recogni-

tion of walking activities presented in [12] with a set of

prediction and learning modules. Recognition of gait events

is performed with a Bayesian formulation together with a

sequential analysis method. We use the following notation:

• C, a finite set of classes or events N = |C|, e.g., here

it denotes set of the gait events.

• z, measurements from the wearable sensors.

• n, denotes a specific gait event from the set N .

The Bayesian formulation for recognition of gait events is

defined as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)

where P (cn|zt) is the posterior probability of a gait event

cn given the sensor measurements zt at time t, and P (zt|cn)
is the likelihood of the sensor measurements zt. We use

an initial uniform prior P (Cn|z) = 1/N at t = 0, which

is updated by the posterior P (cn|zt−1) estimated at time

t− 1. Here, n = 1, 2, . . . , N with N = 8 are the gait events

(see gait events in Figure 3D). The posterior in Equation 1

is used to make a decision about the gait event once a

belief threshold βthreshold is exceeded. The decision-making

process to recognise a gait event is performed as follows:

if any P (cn|zt) > βthreshold then

ĉ = argmax
cn

P (cn|zt)
(2)

where the gait event ĉ at time t is obtained using the

maximum a posteriori (MAP) estimate. The confidence of

our Bayesian system can be adjusted with the belief threshold

βthreshold parameter, which allows to control the recognition

accuracy. The physical and perception layers in Figure 6

contain the processes for sensor data collection and Bayesian

perception. For more details about the estimation of the

parameters of our Bayesian perception system and its ap-

plication for different tasks see [12], [27].
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Fig. 3. Angular velocity data collected from three locomotion modes; level-ground walking, ramp ascent and ramp descent represented by black, blue and
green colour curves. The data were collected using three inertial measurement units (IMUs) attached to (A) the thigh, (B) shank and (C) foot of healthy
human participants. Solid lines show the mean angular velocities for each locomotion mode, while dashed-lines represent the standard deviation.

Our Bayesian approach assumes an initial uniform prior

for each new decision process. However, humans make

decisions using knowledge and observations learned from

previous events, which generate non-uniform initial priors.

This contributes to attain more accurate and fast decisions,

but also to predict next events. For that reason, we have

extended our work with a prediction layer and an Adaptive

Neuro-Fuzzy system described in the following sections.

C. Prediction of gait events

For prediction of gait events we obtain a predicted proba-

bility distribution from the observation of transitions between

gait events (see Figure 3D) over time as follows:

Ppredicted(cn|zτ ) = P (cn + δ|zτ−1) (3)

where Ppredicted(cn|zτ ) is the predicted probability used

for initialisation of the new decision-making process at

time τ . P (cn + δ|zτ−1) is the posterior from the previous

decision made by our Bayesian method and shifted by the

parameter δ. The parameter δ is learned by observation of

how transitions between gait events occur from previous

ĉτ−1 and current ĉτ decisions made over time τ . This process

is performed as follows:

δ = ĉτ − ĉτ−1 (4)

where δ ∈ {0, . . . , 7} according to the segmentation of the

gait cycle into eight events. We use the MAP estimate to

obtain the most probable predicted class c̃τ from Equation (3)

as follows:

c̃τ = argmax
cn

Ppredicted(cn|zτ ) (5)

To ensure reliable predictions and decisions, the accuracy

of the predicted class or gait event is evaluated as follows:

ξτ = (βthreshold − (ĉτ − c̃τ−1)) (6)

where ξτ represents the accuracy of the predicted gait event

estimated at previous decision time τ − 1.

D. Adaptive Neuro-Fuzzy system

We implement an Adaptive Neuro-Fuzzy system, based

on the ANFIS model [20] and the Takagi-Sugeno inference

engine, to learn the weighting parameter α. This parameter

is required to combine two sources of information and obtain

the new updated prior for the initialisation of our perception

system. Figure 4 shows the structure of our inference system.

To speed up the learning process, the Adaptive Neuro-Fuzzy

system is trained with an Adaptive Back Error Propagation

(ABEP) technique and a cross-validation method using the

following ith-membership function updating rules [21]:

∆wi(τ + 1) = −η1
∂El

∂wi

+ γ∆wi(τ) (7)

∆σi(τ + 1) = −η2
∂El

∂σi

+ γ∆σi(τ) (8)

∆mi

k
(τ + 1) = −η3

∂El

∂mi

k

+ γ∆mi

k
(τ) (9)

where m, w and σ are the centre, width and

fuzzy weight for the ith-fuzzy rule, while El =
1
2

∑M

τ=1 (ατ − S(x)βthreshold)
2

is the cost function

error and S(x) is a sigmoid function. A performance index

Γi(τ+1) = 1
Γ

∑L

l=1 E
2
l

that monitors the adaptive approach

is defined as follows:

• if Γi(τ + 1) ≥ Γi(τ) Then

η(τ + 1) = hdη(t), γ(τ + 1) = 0

• if Γi(τ + 1) < Γi(τ) and

∣

∣

∣

∣

∣

∆Γi

Γi(τ)

∣

∣

∣

∣

∣

< θ Then

η(τ + 1) = hiη(t), γ(τ + 1) = γ0 (10)

• if Γi(τ + 1) < Γi(τ) and

∣

∣

∣

∣

∣

∆Γi

Γi(τ)

∣

∣

∣

∣

∣

≥ θ Then

η(τ + 1) = η(τ), γ(τ + 1) = γ(τ)

where hd (0 < hd < 1) and hi (1 < hi) are the decreasing

and increasing factors, and θ is the threshold for the rate of



Fig. 4. Adaptive Neuro-Fuzzy system used to learn the weighting parameter
α. It is composed of two inputs, one output and four hidden layers.

the relative index based on the Root-Mean-Square Error. The

behaviour of our inference system, given the inputs ξτ (pre-

diction error) and βthreshold (belief threshold), is shown by

the surface plot in Figure 5. Then, the output parameter α is

used to weight the combination of the predicted distribution

(Ppredicted(cn|zτ )) and the uniform distribution (Pflat(cn))
to obtain the new updated prior as follows:

P (cn|zτ ) = ατPpredicted(cn|zτ ) + (1− ατ )Pflat(cn) (11)

where P (cn|zτ ) is the prior distribution that initialises the

new decision process performed by our Bayesian method

at time τ . Equation 11 shows that our probabilistic system

autonomously uses more information from the information

source that is more accurate. For example, our method relies

more on Ppredicted when predictions are accurate, reducing

the contribution from the uniform distribution and vice

versa. Notice that when α = 0 our method behaves as our

initial Bayesian method described in Section II-B. Figure 6

shows a description of our combined Adaptive Neuro-Fuzzy

and Bayesian strategy using a layered control architecture

composed of physical, perception and prediction layers.

III. RESULTS

We validate the performance in both, accuracy and speed,

of our combined strategy with the recognition and prediction

of gait events. For these experiments we use training and

testing datasets collected from IMU sensors attached to the

lower limbs of human participants (see Section II-A).

A. Recognition of gait events

First, we validate the accuracy and speed of our combined

system with recognition of gait events for different walking

activities. For this experiment we use angular velocity signals

from level-ground walking, ramp ascent and ramp descent.

These signals collected from the thigh, shank and foot

of human participants are shown in Figure 3. The eight

segments in which the gait cycle is divided, for recognition

of gait events, are shown in Figure 3D.

Our combined strategy is configured with the classes

C ={initial contact, loading phase, mid stance, terminal

stance, pre-swing, initial swing, mid swing, terminal swing}
and N = 8 that represent the gait events. We set βthreshold =

0
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Fig. 5. Output surface obtained from the Adaptive Neuro-Fuzzy system.
Our system receives two inputs, ξτ (prediction error) and βthreshold (belief
threshold), and one output α (weighting parameter).

[0.0, 0.05, . . . , 0.99] to evaluate the recognition accuracy and

decision time for different levels of confidence used by

our perception method. In this experiment for recognition

accuracy and speed, our method randomly draw samples

from the testing dataset with 10,000 iterations for each belief

threshold value in βthreshold. Averaged gait event recognition

results over all walking activities against belief threshold are

shown in Figure 7A. The recognition accuracy for gait events

is gradually improved, starting with a mean error of 7%

and reaching a small mean error of 0.52% using threshold

values of βthreshold = 0.0 and βthreshold = 0.99 respectively.

Decision time results against belief threshold in Figure 7B

shows the speed of our combined strategy to make a decision.

The decision time gradually increases from a mean of 1

(10 ms) to 10 (100 ms) sensor samples with βthreshold = 0.0
and βthreshold = 0.99 respectively. These results show that
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Fig. 8. Confusion matrices with prediction accuracy of the eight gait events that composed the gait cycle: (1) initial contact, (2) loading phase, (3) mid
stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing, (8) terminal swing. The accuracy for prediction of the most probable gait events,
for three walking activities, are shown in black and light brown colours, which represent low and high probability respectively. (A) Very low accurate
prediction results (x axis) that correspond to βthreshold = 0 and the low accurate recognition of current gait events (y axis). (B) Accurate recognition
and prediction of gait events with βthreshold = 0.8. (C) Highly accurate recognition and prediction of gait events achieved with βthreshold = 0.99.

our proposed system is not only highly accurate (99.48%),

but also it is capable to perform fast decisions (100 ms),

which is important in robotics and autonomous systems.

Recognition accuracy for each individual gait event is

shown by the confusion matrix in Figure 7C, where black

and white colours represent low and high accuracy respec-

tively. These results show the high accuracy achieved for

recognition of each gait event, but also they show that it

is possible to determine in which gait phase is the human

during the walking activity, e.g., stance or swing phase. This

information from both, gait event and gait phase, provide

a better knowledge about the state of the walking activity,

which can be used to develop more robust and intelligent

autonomous devices that safely assist humans in ADLs.

B. Prediction of gait events

Prediction results of gait events for different belief thresh-

old values βthreshold, and averaged over all walking ac-

tivities are presented by confusion matrices in Figure 8.

These results show the accuracy of our combined Adaptive

Neuro-Fuzzy and Bayesian strategy to predict the next most

probable gait event based on the recognition of the current

event and observation of previous decisions. Rows of each

confusion matrix show the current recognised event, while

columns show the most (light brown colour) and least (black

colour) probable gait event. Figure 8A shows the confusion

matrix obtained with βthreshold = 0.0, which achieved low

prediction accuracy results. This behaviour is related to the

low accuracy for recognition of current gait events that,

given the belief threshold value βthreshold = 0.0, affects

the performance of predictions. Figure 8B shows the results

when the confidence of our perception system is increased

using βthreshold = 0.8. From this confusion matrix, we

observe that our combined strategy is capable to achieve

better predictions for gait events, which also improves the

accuracy to recognise whether the human is in stance or

swing phase. Our proposed strategy achieved its highest

accuracy with βthreshold = 0.99 as shown by the confusion

matrix in Figure 8C. Here, again we observe that high

accuracy was achieved for both recognition of current gait

events and prediction of the most probable gait events using

our combined Adaptive Neuro-Fuzzy and Bayesian strategy.

Interestingly, our proposed strategy is able to achieve not

only highly accurate recognition and prediction results, but

also it demonstrated to be fast, requiring a mean of 10

sensor samples (100 ms) to make a decision (see Figure 7C).

Results from all experiments validate our proposed combined

strategy which, learning how to combine information sources



using an Adaptive Neuro-Fuzzy system to adapt the prior

distribution of a Bayesian perception system, improves the

accuracy and speed for recognition and prediction of gait

events. Furthermore, this predictive functionality offered by

our combined strategy, at high-level layer, can be used to

prepare low-level controllers of robotic devices to respond

according to the predicted or anticipated gait events for safe

assistance to humans in their activities of daily living.

IV. CONCLUSIONS

In this work we presented a combined Adaptive Neuro-

Fuzzy and Bayesian strategy for recognition and prediction

of gait events. This strategy extends our previous study for

recognition of walking activities. For recognition of gait

events, we used a Bayesian perception system that, together

with a sequential analysis method, achieves highly accurate

results. Prediction of gait events was implemented with a

method based on the observation of actions and decisions

made by our perception system over time. This observa-

tion provides a transition parameter that is used to obtain

a predicted probability distribution. We used an Adaptive

Neuro-Fuzzy system to learn how to use the predicted infor-

mation for new decisions tasks performed by our Bayesian

method. This learning process allows our combined strategy

to autonomously evaluate and adapt its own performance,

ensuring the best recognition and prediction results in accu-

racy and speed. We validated our methods with experiments

for recognition and prediction of gait events during walking

activities using three wearable sensors attached to the lower

limbs of participants. Results showed that combining the

benefits from both, Adaptive Neuro-Fuzzy and Bayesian

methods, it is possible to achieve fast and highly accurate

recognition and prediction of gait events.

Overall, our combined Adaptive Neuro-Fuzzy and

Bayesian strategy demonstrated to be robust for the analysis

of human movements using wearable sensors. Furthermore,

the features offered by our work, integrated to low-level

controllers, provide a reliable approach to develop intelligent

robotic devices that safely assist humans in their ADLs.
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