6,324 research outputs found

    The Rotation of Young Low-Mass Stars and Brown Dwarfs

    Full text link
    We review the current state of our knowledge concerning the rotation and angular momentum evolution of young stellar objects and brown dwarfs from a primarily observational view point. Periods are typically accurate to 1% and available for about 1700 stars and 30 brown dwarfs in young clusters. Discussion of angular momentum evolution also requires knowledge of stellar radii, which are poorly known for pre-main sequence stars. It is clear that rotation rates at a given age depend strongly on mass; higher mass stars (0.4-1.2 M⊙_\odot) have longer periods than lower mass stars and brown dwarfs. On the other hand, specific angular momentum is approximately independent of mass for low mass pre-main sequence stars and young brown dwarfs. A spread of about a factor of 30 is seen at any given mass and age. The evolution of rotation of solar-like stars during the first 100 Myr is discussed. A broad, bimodal distribution exists at the earliest observable phases (∌\sim1 Myr) for stars more massive than 0.4 M⊙_\odot. The rapid rotators (50-60% of the sample) evolve to the ZAMS with little or no angular momentum loss. The slow rotators continue to lose substantial amounts of angular momentum for up to 5 Myr, creating the even broader bimodal distribution characteristic of 30-120 Myr old clusters. Accretion disk signatures are more prevalent among slowly rotating PMS stars, indicating a connection between accretion and rotation. Disks appear to influence rotation for, at most, ∌\sim5 Myr, and considerably less than that for the majority of stars. If the dense clusters studied so far are an accurate guide, then the typical solar-like star may have only ∌\sim1 Myr for this task. It appears that both disk interactions and stellar winds are less efficient at braking these objects.Comment: Review chapter for Protostars and Planets V. 15 page and 8 figure

    Rotation in the Orion Nebula Cluster

    Get PDF
    Eighteen fields in the Orion Nebula Cluster (ONC) have been monitored for one or more observing seasons from 1990-99 with a 0.6-m telescope at Wesleyan University. Photometric data were obtained in Cousins I on 25-40 nights per season. Results from the first 3 years of monitoring were analyzed by Choi & Herbst (1996; CH). Here we provide an update based on 6 more years of observation and the extensive optical and IR study of the ONC by Hillenbrand (1997) and Hillenbrand et al. (1998). Rotation periods are now available for 134 ONC members. Of these, 67 were detected at multiple epochs with identical periods by us and 15 more were confirmed by Stassun et al. (1999) in their study of Ori OBIc/d. The bimodal period distribution for the ONC is confirmed, but we also find a clear dependence of rotation period on mass. This can be understood as an effect of deuterium burning, which temporarily slows the contraction and thus spin-up of stars with M <0.25 solar masses and ages of ~1 My. Stars with M <0.25 solar masses have not had time to bridge the gap in the period distribution at ~4 days. Excess H-K and I-K emission, as well as CaII infrared triplet equivalent widths (Hillenbrand et al. 1998), show weak but significant correlations with rotation period among stars with M >0.25 solar masses. Our results provide new observational support for the importance of disks in the early rotational evolution of low mass stars. [abridged]Comment: 18 pages of text, 17 figures, and 4 tables; accepted for publication in The Astronomical Journa

    Boundary states, matrix factorisations and correlation functions for the E-models

    Get PDF
    The open string spectra of the B-type D-branes of the N=2 E-models are calculated. Using these results we match the boundary states to the matrix factorisations of the corresponding Landau-Ginzburg models. The identification allows us to calculate specific terms in the effective brane superpotential of E_6 using conformal field theory methods, thereby enabling us to test results recently obtained in this context.Comment: 20 pages, no figure

    Methanol in the sky with diamonds

    Get PDF
    The present of gas phase methanol in dense interstellar molecular clouds was established by radio detection of its rotational emission lines. However, the position, width, and profile of a absorption band near 1470 cm(exp -1) in the IR spectra of many dense molecular clouds strongly suggests that solid methanol is an important component of interstellar ices. In an attempt to better constrain the identification of 1470 cm(exp -1) feature, we began a program to search for other characteristic absorption bands of solid state methanol in the spectra of objects known to produce this band. One such feature is now identified in the spectra of several dense molecular clouds and its position, width, and profile fit well with those of laboratory H2O:CH3OH ices. Thus, the presence of methanol-bearing ices in space is confirmed

    Effective superpotentials for B-branes in Landau-Ginzburg models

    Get PDF
    We compute the partition function for the topological Landau-Ginzburg B-model on the disk. This is done by treating the worldsheet superpotential perturbatively. We argue that this partition function as a function of bulk and boundary perturbations may be identified with the effective D-brane superpotential in the target spacetime. We point out the relationship of this approach to matrix factorizations. Using these methods, we prove a conjecture for the effective superpotential of Herbst, Lazaroiu and Lerche for the A-type minimal models. We also consider the Landau-Ginzburg theory of the cubic torus where we show that the effective superpotential, given by the partition function, is consistent with the one obtained by summing up disk instantons in the mirror A-model. This is done by explicitly constructing the open-string mirror map.Comment: 57p, 7 figs, harvma

    Simulation System for the Wendelstein 7-X Safety Control System

    Full text link
    The Wendelstein 7-X (W7-X) Safety Instrumented System (SIS) ensures personal safety and investment protection. The development and implementation of the SIS are based on the international safety standard for the process industry sector, IEC 61511. The SIS exhibits a distributed and hierarchical organized architecture consisting of a central Safety System (cSS) on the top and many local Safety Systems (lSS) at the bottom. Each technical component or diagnostic system potentially hazardous for the staff or for the device is equipped with an lSS. The cSS is part of the central control system of W7-X. Whereas the lSSs are responsible for the safety of each individual component, the cSS ensures safety of the whole W7-X device. For every operation phase of the W7-X experiment hard- and software updates for the SIS are mandatory. New components with additional lSS functionality and additional safety signals have to be integrated. Already established safety functions must be adapted and new safety functions have to be integrated into the cSS. Finally, the safety programs of the central and local safety systems have to be verified for every development stage and validated against the safety requirement specification. This contribution focuses on the application of a model based simulation system for the whole SIS of W7-X. A brief introduction into the development process of the SIS and its technical realization will be give followed by a description of the design and implementation of the SIS simulation system using the framework SIMIT (Siemens). Finally, first application experiences of this simulation system for the preparation of the SIS for the upcoming operation phase OP 1.2b of W7-X will be discussed

    Experimental Test bed to De-Risk the Navy Advanced Development Model

    Get PDF
    This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic

    Reaction kinetics of bismuth dissolution from lead cake by sulfuric acid leaching

    Get PDF
    Journal ArticleLead cake, a zinc smelter flue dust residue, consists primarily of lead sulfate. Characteristic properties of lead cake were determined in order to aid the understanding of reaction mechanisms involved in bismuth removal from lead cake by sulfuric acid digestion. Sp gr (specific gravity) measurements, surface area measurements, and photomicrographs revealed that the particles of lead cake are quite porous and seem to consist of an agglomeration of submicron grains (0.4 \xm) fused together in a manner similar to cement clinker. Analysis of experimental rate data, which was independent of particle size, indicates that the dissolution reaction involves two distinct, rate limiting steps. The initial stage of reaction appears to be limited mainly by intergranular diffusion of the reactant, hydrogen ion, while the latter stage of reaction appears to be controlled by diffusion of soluble reaction products through the reaction product layer of the individual grains
    • 

    corecore